(a) 
According to Newton's second law, the force experienced by each balloon is given by:
F = ma
where
m = 0.021 kg is the mass
a = 1.1 m/s^2 is the acceleration
Substituting, we found:

The electrostatic force between the two balloons can be also written as

where
k is the Coulomb's constant
Q is the charge on each balloon
r = 16 m is their separation
Since we know the value of F, we can find Q, the magnitude of the charge on each balloon:

(b)
electrons
The magnitude of the charge of one electron is

While the magnitude of the charge on one balloon is

This charge can be written as

where N is the number of electrons that are responsible for this charge. Solving for N, we find:

<u>Answer</u>: The potential difference across the resistor is 12 volts.
<u>Explanation:</u>
To calculate the potential difference cross the resistor, we use Ohm's Law. This law states that the potential difference across two wires is directly proportional to the current flowing through that wire.
Mathematically,

Where,
V = potential difference = ?V
I = Current flowing = 1.2 A
R = Resistor = 
Putting values in above equation, we get:

Hence, the potential difference across the resistor is 12 volts
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
Answer:
170 N
Explanation:
Given in the question that, work a bulldozer can do = 4500 J
<h3>
Step 1</h3>
We will use trigonometry identity to find the distance bulldozer will travel up the hill
sin(35) = opp/hypo
sin(35) = 15/hypo
hypo = 15/sin(35)
hypo = 26.15m
<h3>Step 2</h3>
Formula to use
work done = force × distance
Plug values in the above formula
4500 = force x 26.15
force = 4500/26.15
force = 172.08
force ≈ 170 N
<h3 /><h3 /><h3 />
The working distance gets shorter as the magnification gets bigger. In order to focus, the high-power objective lens must be significantly nearer to the specimen than the low-power lens. Magnification is negatively correlated with working distance.
Magnification change The magnification of a specimen is increased by switching from low power to high power. The magnification of an image is determined by multiplying the magnification of the objective lens by the magnification of the ocular lens, or eyepiece.
The geometry of the optical system connects the magnifying power, or how much the thing being observed seems expanded, and the field of view, or the size of the object that can be seen.
To know more about working distance
brainly.com/question/13551539
#SPJ4