Answer:
Both experienced the same magnitude impulse
Explanation:
This is because, the impulse force is internal to the system of both the tennis ball and the bowling ball. It is an action-reaction pair. So, the force exerted on the tennis ball by the bowling ball equals in magnitude to the force exerted by the tennis ball on the bowling ball although, they are in opposite directions. This, both experienced the same magnitude impulse.
F=mg=Gm1m2/r^2
g=Gm2/r^2
g=2Gm2/(2r)^2=2Gm2/4r^2=Gm2/2r^2
So since there is half times the gravity on this unknown planet that has twice earth's mass and twice it's radius, then the person can jump twice as high. 1.5*2= 3m high
Mechanical
waves are oscillation of matter, they are important because they all
transfer energy from one place to another. There are 2 types of
mechanical waves. A transverse wave where the particles vibrate
perpendicular to the direction of energy travel and a longitudinal
wave where particle vibrations are parallel to the direction of the
energy transfer.
I
hope it helps, Regards.
The buoyant force on any object acts in the direction opposite to the force of gravity. <em>(A)</em>
Acceleration = (change in speed) / (time for the change)
= (49 m/s) / (5 seconds)
= (49 / 5) m/s / s
= 9.8 m/s²