Answer:
1) Position time graph
2) Acceleration time graph
3) Velocity time graph
Answer:
Figure E is the correct representation of the first part of the motion. When in a hanging position from the chin-up bar, the bicep muscles are stretched beyond their normal length already. So at this point they are at the peak of their capacity and you are at rest (this corresponds to the velocity v = 0 at t = 0). On contracting the bicep muscles and pulling your whole body up, you begin to gain speed and v increases. This increase in velocity is exponential. Soon the bicep muscles contract up to 80% their normal length reducing the force they can produce to keep you rising up to zero. The velocity change happens because the body is accelerating and the muscles can still supply a net force to lift you up. The acceleration is present because of this net force. The moment this force reduces to zero, the acceleration too reduces to zero. (From Newton's second law of motion). This reduction in acceleration is responsible for the reduction of the curvature of the v curve in figure E above. The point where the velocity becomes horizontal corresponds to the point where the muscles reach their maximum contraction unit and can supply no more net force and as a result no acceleration. This further results inba constant velocity which is the flat nature of the curve seen in diagram E.
Thank you for reading.
Explanation:
"A pitcher throws a baseball, and then the batter hits a homerun" is the one among the following choices given in the question that <span>best represents potential energy being converted to kinetic energy. The correct option among all the options that are given in the question is the second option or option "2". </span>
Rotation. The Earth rotates around the sun on it’s axis. Depending how far north or south you live, and the angle of the sun at different times of year gives you the amount of daylight or darkness you will receive. So the length of day or night depends on how much the sun is able to reach the spot on a round object such as the planet Earth.