Answer:
1.25 m/s
Explanation:
Given,
Mass of first ball=0.3 kg
Its speed before collision=2.5 m/s
Its speed after collision=2 m/s
Mass of second ball=0.6 kg
Momentum of 1st ball=mass of the ball*velocity
=0.3kg*2.5m/s
=0.75 kg m/s
Momentum of 2nd ball=mass of the ball*velocity
=0.6 kg*velocity of 2nd ball
Since the first ball undergoes head on collision with the second ball,
momentum of first ball=momentum of second ball
0.75 kg m/s=0.6 kg*velocity of 2nd ball
Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg
=1.25 m/s
<h3>16.</h3>
Your answer is correct.
___
<h3>17.</h3>
The fractional change in resistance is equal to the given temperature coefficient multiplied by the change in temperature.
R = R₀×(1 + α×ΔT)
R = (10.0 Ω)×(1 + 0.004×(65 -20)) = 11.8 Ω
Answer:
Explanation:
a ) work done by gravitational force
= mg sinθ ( d + .21)
Potential energy stored in compressed spring
= 1/2 k x²
= .5 x 431 x ( .21 )²
= 9.5
According to conservation of energy
mg sinθ ( d + .21) = 9.5
3.2 x 9.8 x sin 30( d + .21 ) = 9.5
d = 40 cm
b )
As long as mg sin30 is greater than kx ( restoring force ) , there will be acceleration in the block.
mg sin30 = kx
3.2 x 9.8 x .5 = 431 x
x = 3.63 cm
When there is compression of 3.63 cm in the spring , block will have maximum velocity. there after its speed will start decreasing.
There's no way to tell. Without seeing a diagram of the circuit,
I'll need to know much more about it than you've told me.
I don't know anything about the components or power supply
that are in the circuit, and I don't know where point ' f ' is in it.
Right now, even with the copious volume of all the available
information, no answer to your question is possible.