The magnification of the ornament is 0.25
To calculate the magnification of the ornament, first, we need to find the image distance.
Formula:
- 1/f = u⁻¹+v⁻¹.................... Equation 1
Where:
- f = Focal length of the ornament
- u = image distance
- v = object distance.
make u the subject of the equation
- u = fv/(f+v)................ Equation 2
From the question,
Given:
Substitute these values into equation 2
- u = (12×4)/(12+4)
- u = 48/16
- u = 3 cm.
Finally, to get the magnification of the ornament, we use the formula below.
- M = u/v.................. Equation 3
Where
- M = magnification of the ornament.
Substitute these values above into equation 3
Hence, The magnification of the ornament is 0.25
Answer:
The periodic table illustrate some of the elements from Hydrogen to Calcium
The quickest technique to calculate the volume of a cube-shaped table is to use a ruler to measure one side, then multiply that figure by three. Option B is correct.
<h3 /><h3>How do you calculate the volume of a cube?</h3>
Assume the side length of the cube under consideration is L units. The volume of the cube is then equal to L³ cubic units.
The volume of a cube is;
V = L³
Ubes have equal-length sides. The quickest technique to calculate the volume of a cube-shaped table is to use a ruler to measure one side, then multiply that figure by three.
Hence option B is correct.
To learn more about the volume of a cube refer
brainly.com/question/26136041
#SPJ1
Answer:
162.8 K
Explanation:
initial current = io
final current, i = io/8
Let the potential difference is V.
coefficient of resistivity, α = 43 x 10^-3 /K
Let the resistance is R and the final resistance is Ro.
The resistance varies with temperature
R = Ro ( 1 + α ΔT)
V/i = V/io (1 + α ΔT )
8 = 1 + 43 x 10^-3 x ΔT
7 = 43 x 10^-3 x ΔT
ΔT = 162.8 K
Thus, the rise in temperature is 162.8 K.
Answer:
a) The electric field at that point is
newtons per coulomb.
b) The electric force is
newtons.
Explanation:
a) Let suppose that electric field is uniform, then the following electric field can be applied:
(1)
Where:
- Electric field, measured in newtons per coulomb.
- Electric force, measured in newtons.
- Electric charge, measured in coulombs.
If we know that
and
, then the electric field at that point is:


The electric field at that point is
newtons per coulomb.
b) If we know that
and
, then the electric force is:



The electric force is
newtons.