Answer:
You could put over six planets the size of Mars inside the Earth. The largest planet in our Solar System, Jupiter's size is astounding. Jupiter has a volume of 1.43 x 1015 cubic kilometers. To show what this number means, you could fit 1321 Earths inside of Jupiter
Explanation:
Question:
What two forces are balanced in what we call gravitational equilibrium?
A) the electromagnetic force and gravity
B) outward pressure and the strong force
C) outward pressure and inward gravity
D) the strong force and gravity
E) the strong force and kinetic energy
Answer:
The correct answer is C) Outward Pressure and Inward gravity
Explanation:
Gravitational equilibrium is a balance between the inward pull of gravity and the outward push of internal gas pressure. It also refers to the condition of a star in which the weight of overlying layers at each point is balanced by the total pressure at that point.
As the weight increases in the lower layers of the sun, the pressure also increases to maintain this balance. So you find that the outward push of pressure balances the inward pull of gravity thus creating an equilibrium.
Why is gravitational equilibrium important?
The simple answer is <u>balance. </u> If for instance the sun as a stable star (which has gravitational equilibrium) loses it's balance, it becomes highly unstable and prone to violent outbursts. These outbursts are caused by the very high radiation pressure at the star's upper layers, which blows significant portions of the matter at the "surface" into space during eruptions that may rage for several years. Of course such a condition is adverse to the existence and support of life.
Cheers!
<h3><u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>:</u><u>-</u></h3>
- Energy Transferre=11KJ
- Efficiency=35%
<h3>☆Usefully transferred energy:-</h3>






Answer:
Explanation:
Using the equation of motion v = u + at to get the speed at which the object would be travelling.
v is the final speed (in m/s)
u is the initial velocity (in m/s)
a is the acceleration (in m/s²)
t is the time taken (in secs)
Given parameters
u = 0m/s
t = 10s
a = g = 9.8m/s²
Substituting this values into the formula;
v = 0+9.8(10)
v = 0+ 98
v = 98m/s
<em>Hence the rock will be travelling at a speed of 98m/s.</em>