The amount of heat required to convert H₂O to steam is : 382.62 kJ
<u>Given data :</u>
Mass of liquid water ( m ) = 150 g
Temperature of liquid water = 43.5°C
Temperature of steam = 130°C
<h3 /><h3>Determine the amount of heat required </h3>
The amount of heat required = ∑ q1 + q2 + q3 ----- ( 1 )
where ;
q1 = heat required to change Temperature of water from 43.5°C to 100°C . q2 = heat required to change liquid water at 100°C to steam at 100°C
q3 = heat required to change temperature of steam at 100°C to 130°C
M* S
*ΔT
= 150 * 4.18 * ( 100 - 43.5 )
= 35425.5 J
moles * ΔHvap
= (150 / 18 )* 40.67 * 1000
= 338916.67 J
M * S
* ΔT
= 150 * 1.84 * ( 130 -100 )
= 8280 J
Back to equation ( 1 )
Amount of heat required = 35425.5 + 338916.67 + 8280 = 382622.17 J
≈ 382.62 kJ
Hence we can conclude that The amount of heat required to convert H₂O to steam is : 382.62 kJ.
Learn more about Specific heat of water : brainly.com/question/16559442
Answer:
for anapproximate result , divide the pressure value by 7.501
Answer:
Causes the equilibrium to shift to the left, in favor of making more reactants, and K decreases.
Explanation:
Le Châtelier's principle states that if there is a stress in equilibrium, the reaction will shift to restore the equilibrium. An exothermic reaction loses heat for the surroundings, so the equilibrium must be represented as:
Reactants ⇔ Products + Heat
Then, when more heat is added, to restore the equilibrium, the reaction shift to the left ("consuming" heat), in favor of making more reactants.
The equilibrium constant (K) is:
K = [Products]/[Reactants]
So, [Reactants] will increase, and K must decrease.
Answer:
First one c for the second one i think is c sorry if wrong hope this help
Explanation: