1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
3 years ago
14

How to convert 18 gallons/1 hour to cups and minutes

Mathematics
1 answer:
Ne4ueva [31]3 years ago
8 0
So there are 2 things you need to convert, the first is the gallons to cups and the second is the hours to minutes. so I like to set it up with numerators and denominators and then multiply the ratios. All same terms will cross out and be opposite of each other. 

(18 gal/1 hour) x (1 hour / 60 minutes), now we have (0.3 gallons/1 minute) we just have to change gallons to cups

(0.3 gallons/ 1 minute) x (4 quarts/1 gallon) x (2 pints/1 quart) x (2 cups/1 pint)

this comes out 4.8 cups/1 minute
You might be interested in
How to write 0.875 as a fraction in simplest form
Over [174]
Now, lets first know this:-

0.875 = 875/1000

Lets simplify this:-

875/125 = 7
1000/125 = 8

7/8

Answer: 7/8
4 0
3 years ago
Read 2 more answers
The area of a circle (A) is given by the formula A=r^2 where r is the circle's radius. The formula to find r is______ . If (A)=5
9966 [12]

Answer: (A)   and   (A)

<u>Step-by-step explanation:</u>

A=\pi \cdot r^2\\\\\dfrac{A}{\pi}=r^2\\\\\sqrt{\dfrac{A}{\pi}}=r\ \rightarrow \ \bigg(\dfrac{A}{\pi}\bigg)^{\dfrac{1}{2}}\\\\\\\\r=\sqrt{\dfrac{A}{\pi}}\\\\.\ =\sqrt{\dfrac{54\cdot 7}{22}}\\\\.\ =\sqrt{\dfrac{27\cdot 7}{11}}\\\\.\ =\sqrt{\dfrac{189}{11}}\\\\.\ =\sqrt{17.1818}\\\\.\ =4.15

8 0
3 years ago
It is a timed test i will give brainleist
Harlamova29_29 [7]

hhhhhhhhhkkkkkkkkkkkkkkkkh

8 0
3 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
What is x in x - 4 (x - 3) + 7 = 6 - (x - 4)
WINSTONCH [101]
-1 use mathpapa it will give you the answar

6 0
3 years ago
Other questions:
  • Write a doubles fact you can use to find the sum of 6+7
    13·1 answer
  • Algebra question, any help is appreciated
    6·2 answers
  • Find the x-intercept and the y-intercept of the line above
    8·1 answer
  • You need to guess on a multiple-choice question that has four options.
    12·2 answers
  • What is the solution to the equation?
    11·2 answers
  • Murphy Frozen Yogurt cones come in 4 flavors (chocolate, strawberry, coffee, and vanilla) with 4 choices of topping (sprinkles,
    8·2 answers
  • PLZ HELP MEEE!!!
    13·1 answer
  • 3x&lt;11.75 solve for x please, with step on how you got to that answer!
    13·1 answer
  • There are 20 marbles in a bag. 16 are red. The remaining are white. What is the probability of selecting a red marble
    15·1 answer
  • Given f(x) = 3x^2 + 2x – 1 and g(x) = 4x-5 find ( g of f) (-2)
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!