1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
N76 [4]
3 years ago
10

Evolutionary sequence of our sun

Physics
1 answer:
n200080 [17]3 years ago
8 0
<span>A cloud of gas and dust begins to contract under the force of gravity. In regions of star birth, we find gaseous nebulae and molecular clouds. These sites of pre-birth are dark patches called globules.The protosun collapsed. As it did, its temperature rose to about 150,000 degrees and the sun appeared very red. Its radius was about 50 present solar radii.When the central temperature reaches 10 million degrees, nuclear burning of hydrogen into helium commences.The star settles into a stable existence on the Main Sequence, generating energy via hydrogen burning. This is the longest single stage in the evolutionary history of a star, typically lasting 90% of its lifetime. Thermonuclear fusion within the Sun is a stable process, controlled by its internal structure.</span><span>The hydrogen in the core is completed burned into helium nuclei. Initially, the temperature in the core is not hot enough to ignite helium burning. With no additional fuel in the core, fusion dies out. The core cannot support itself and contracts; as it shrinks, it heats up. The rising temperature in the core heats up a thin shell around the core until the temperature reaches the point where hydrogen burning ignites in this shell around the core. With the additional energy generation in the H-burning shell, the outer layers of the star expand but their temperature decreases as they get further away from the center of energy generation. This large but cool star is now a red giant, with a surface temperature of 3500 degrees and a radius of about 100 solar radii.<span>The helium core contracts until its temperature reaches about 100 million degrees. At this point, helium burning ignites, as helium is converted into carbon (C) and oxygen (O). However, the core cannot expand as much as required to compensate for the increased energy generation caused by the helium burning. Because the expanion does not compensate, the temperature stays very high, and the helium burning proceeds furiously. With no safety valve, the helium fusion is uncontrolled and a large amount of energy is suddenly produced. This<span>helium flash </span>occurs within a few hours after helium fusion begins.The core explodes, the core temperature falls and the core contracts again, thereby heating up. When the helium burns now, however, the reactions are more controlled because the explosion has lowered the density enough. Helium nuclei fuse to form carbon, oxygen, etc..</span>The star wanders around the red giant region, developing its distinct layers, eventually forming a carbon-oxygen core.When the helium in the core is entirely converted into C, O, etc., the core again contracts, and thus heats up again. In a star like the Sun, its temperature never reaches the 600 million degrees required for carbon burning. Instead, the outer layers of the star eventually become so cool that nuclei capture electrons to form neutral atoms (rather than nuclei and free electrons). When atoms are forming by capturing photons in this way, they cause photons to be emitted; these photons then are readily available for absorption by neighboring atoms and eventually this causes the outer layers of the star to heat up. When they heat up, the outer layers expand further and cool, forming more atoms, and releasing more photons, leading to more expansion. In other words, this process feeds itself.The outer envelope of the star blows off into space, exposing the hot, compressed remnant core. This is a <span>planetary nebula </span>.</span><span>The core contacts but carbon burning never ignites in a one solar mass star. Contraction is halted when the electrons become degenerate, that is when they can no longer be compressed further. The core remnant as a surface temperature of a hot 10,000 degrees and is now a <span>white dwarf </span>.With neither nuclear fusion nor further gravitational collapse possible, energy generation ceases. The star steadily radiates is energy, cools and eventually fades from view, becoming a black dwarf.</span>
You might be interested in
Currents in the ocean are caused by differences in water density. Colder, denser water tends to
irinina [24]

Answer:

The answer is D.

Explanation:

Just like how cold air falls and warm air rises the same is with water.

Also the places with the coldest water is the north and south pole. The equator is relatively always warm so yeah.

5 0
3 years ago
Read 2 more answers
A 200.0 g block rests on a frictionless, horizontal surface. It is pressed against a horizontal spring with spring constant 4500
kenny6666 [7]

Answer:

 6 m/s

Explanation:

Given that :

mass of the block   m =  200.0 g  = 200 × 10⁻³ kg

the horizontal spring constant   k  =  4500.0 N/m

position of the block (distance x) = 4.00 cm  = 0.04 m

To determine the speed the block will be traveling when it leaves the spring; we applying the  work done on the spring as it is stretched (or compressed) with the kinetic energy.

i.e \frac{1}{2} kx^2  = \frac{1}{2} mv^2

kx^2 = mv^2

4500* 0.04^2 = 200*10^{-3} *v^2

7.2 =200*10^{-3}*v^{2}

v^{2}   =\frac{7.2}{200*10^{-3}}

v   =\sqrt{\frac{7.2}{200*10^{-3}}}

v = 6 m/s

Hence,the speed the block will be traveling when it leaves the spring is  6 m/s

5 0
4 years ago
the metal wire in an incandescent lightbulb glows when the light is switched on and stops glowing when it is switched off. the s
Travka [436]
When the metal wire in an incandescent lightbulb glows when the light is switched on and stops glowing when it is switched off, this is an example of resistance, which provides light and heat. 
3 0
3 years ago
A wire that is 0.36 meters long moves perpendicularly through a magnetic field at a speed of 0.21 meters/second. The induced emf
Sophie [7]

Answer:

the answer is letter D.

Explanation:

i hope this is help

7 0
2 years ago
Determine the direction of the force that will act on the charge in each of the following situations. A negative charge moving t
wlad13 [49]

Answer:

a) DOWN direction,  b)  directed INTO THE SCREEN, c)    F = 0

Explanation:

The direction of the force is

for electric force

           F = q E

where we assume a positive test charge, for which the force has the direction of the electric field.

For a magnetic field

in this case the direction of the force is given by the right hand rule.

For a positive test charge, the thumb points in the direction of velocity, the other fingers extended in the direction of the magnetic field, and the palm gives the direction of force for a positive charge.

           F = q v x B

Let us apply these considerations to our case.

a) negative charge moving to the left

in a magnetic field points away from the screen

In this case the thumb goes to the left, the fingers extended outwards and the palm points upwards, but since the charge is negative the force has a DOWN direction.

b) negative charge moves to the left

in electric field it points off the screen.

The outside is in the direction of the electric field and since the charge is negative, the force is directed INTO THE SCREEN

c) positive charge moves down

in magnetic field points up

in this case the velocity and the field have the same direction so the vector product of them is zero

       F = q v  B sin 0

       F = 0

6 0
3 years ago
Other questions:
  • Please answer. Thanks
    6·1 answer
  • What is an equilibrant?
    10·1 answer
  • A typical home may require a total of 2.00*10^3kWh of energy per month. Suppose you would like to obtain this energy from sunlig
    5·1 answer
  • What factors would change the force of friction?​
    8·1 answer
  • PLEASE HELP!!!! :D When you look at the Sun through a filtered telescope, the visible portion of the Sun appears blotchy.
    6·2 answers
  • Flo is driving her sports car at 30 m/s when a ball rolls out into the street in front of her. Flo slams on the brakes and comes
    9·1 answer
  • A piece of aluminium with mass 1 kg and density 2700 kg/m3 is suspended from a string and then completely immersed in a containe
    8·1 answer
  • In a given chemical reaction, the energy of the products is less than the energy of the reactants. Which statements is true for
    13·2 answers
  • VP 3.12.1 Part APart complete A cyclist going around a circular track at 10.0 m/s has a centripetal acceleration of 5.00 m/s2. W
    5·1 answer
  • Why doesn't the north star move?<br><br>i need the answer asap and i will give brainliest​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!