1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnesinka [82]
3 years ago
9

A mass is hung from a spring and set in motion so that it oscillates continually up and down. The velocity v of the weight at ti

me t is given by the equation v=−2 cos(3πt) with v measured in feet per second and t measured in seconds. Determine the maximum velocity of the mass and the amount of time it takes for the mass to move from its lowest position to its highest position.
Physics
1 answer:
djverab [1.8K]3 years ago
8 0

Answer:

the maximum velocity of the mass v (max) = 2 ft/s

the amount of time it takes for the mass to move from its lowest position to its highest position∆t = 1/3 seconds = 0.33 seconds

Explanation:

Given the velocity equation;

v=−2 cos(3πt)

The maximum velocity would be at cos(3πt) = 1 or cos(3πt) = -1

v (max) = -2 × -1 = 2 ft/s

The time taken for the mass to move from lowest position to highest position

At Lowest position, vertical velocity equals zero.

At highest position, vertical velocity equals zero.

The time taken for the mass to move from one v = 0 to the next v = 0

Cos(π/2) = 0 and

Cos(3π/2) = 0

For the first;

Cos(3πt) = cos(π/2)

3πt1 = π/2

t1 = π/2(3π)

t1 = 1/6 second

For the second;

Cos(3πt) = cos(3π/2)

3πt2 = 3π/2

t2 = 3π/2(3π)

t2 = 1/2 second

∆t = t2 - t1 = 1/2 - 1/6 = 3/6 - 1/6 = 2/6 = 1/3 seconds

∆t = 1/3 seconds

You might be interested in
Tuning an Instrument. A musician tunes the C-string of her instrumeut to a fundamental frequency of 65.4 Hz. The vibrating porti
mylen [45]

(a) The tension the musician must stretch it is 147.82 N.

(b) The percent increase in tension is needed to increase the frequency is 26%.

<h3>Tension in the string</h3>

v = √T/μ

where;

  • v is speed of the wave
  • T is tension
  • μ is mass per unit length = 0.0144 kg / 0.6 m = 0.024 kg/m

v = Fλ

in fundamental mode, v = F(2L)

v = 2FL

v = 2 x 65.4 x 0.6 = 78.48 m/s

v = √T/μ

v² = T/μ

T = μv²

T = 0.024 x (78.48)²

T = 147.82 N

<h3>When the frequency is 73.4 Hz;</h3>

v = 2FL = 2 x 73.4 x 0.6 = 88.08 m/s

T = μv²

T = (0.02)(88.08)²

T = 186.19 N

<h3>Increase in the tension</h3>

= (186.19 - 147.82)/(147.82)

= 0.26

= 0.26 x 100%

= 26 %

Thus, the tension the musician must stretch it is 147.82 N.

The percent increase in tension is needed to increase the frequency is 26%.

Learn more about tension here: brainly.com/question/24994188

#SPJ1

6 0
1 year ago
A spring attached to a mass is at rest in the initial
svet-max [94.6K]

Answer:

E=(1/2)kx^2

Explanation:

6 0
3 years ago
Read 2 more answers
The conductor is initially electrically neutral, and then a charge q is placed at the center of the hollow space. Suppose the co
Anvisha [2.4K]

The total charge on the interior of the conductor is zero.

The total charge on the exterior of the conductor is 8q.

<h3>Total charge on the interior</h3>

Due to large number of electrons available for conduction in a conductor, most of the electrons moves to surface leaving zero net charge inside the conductor.

Thus, the total charge on the interior of the conductor is zero.

<h3>Total charge on the exterior</h3>

The total charge on the exterior of the conductor is calculated as follows;

Q = q + 7q = 8q

Thus, the total charge on the exterior of the conductor is 8q.

Learn more about net charge on interior and exterior of conductors here: brainly.com/question/14653264

7 0
2 years ago
Calculate the net force on the right charge due to the other two. Enter a positive value if the force is directed to the right a
lbvjy [14]

Answer:

Answer:

A. - 0.017N. It acts to the left.

B. - 0.043N. It acts to the left.

C. 0.060N. It acts to the right.

Explanation:

A. For the +65μC charge, we consider it to be the origin. Hence, the two other charges are on the +x axis.

The net coulombs force on the charge is

F = [KQ(1)Q(2)]/(r^2) + [KQ(1)Q(3)]/(r^2)

Where K = Coloumbs constant =

Q(1) = charge on the leftmost side.

Q(2) = charge in the middle.

Q(3) = charge on the rightmost side.

F = [(8.988 × 10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(-95×10^-6)×(65×10^-6)]/(40^2)

F = 0.01753 - 0.03469

F = -0.017N

It has a negative sign, hence, it acts to the left.

B. For the +48μC charge, we consider it to be the origin. Hence, the leftmost charge is on the - x axis and the rightmost charge is on the +x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) + [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = -0.017 - 0.02562

F = - 0.043N

It has a negative sign, hence, it acts to the left.

C. For the -95μC charge, we consider it to be the origin. Hence, the two other charges are on the - x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) - [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(-95×10^-6)]/(40^2) - [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = +0.03469 + 0.02562

F = +0.060N

It has a positive sign, hence, it acts to the right.

Read more on Brainly.com - brainly.com/question/14592748#readmore

Explanation:

5 0
3 years ago
4. Derive<br>the relation, P= hd g​
Sergeu [11.5K]

p=F/A

or,P=d×V×G/A (m=d×V)

or,p= d× A×h×g/A (A and A are cut)

or,P=d×H×G

4 0
3 years ago
Other questions:
  • A centripetal force of 1,400 newtons acts on a car rounding a curve with a radius of 150 meters. If the car has a mass of 2,100
    11·1 answer
  • What is one example of thermal energy
    10·1 answer
  • A student is flying west on a school trip from Winnipeg to Calgary in a jet that has an air velocity of 792 km/h.The direction t
    5·1 answer
  • What is the definition of conservation of energy
    5·2 answers
  • Focus Question: What are SI units, and why are they used?
    6·1 answer
  • The soles of a popular make of running shoe have a force constant of 2.0×105 N/m . Treat the soles as ideal springs for the foll
    11·1 answer
  • You release a block from the top of a long, slippery inclined plane of length l that makes an angle θ with the horizontal. The m
    7·1 answer
  • Two speakers are spaced 15 m apart and are both producing an identical sound wave. You are standing at a spot as pictured. What
    6·2 answers
  • A race car circles 10 times around a circle with a diameter of 7 km track in 50 min. Using SI
    8·1 answer
  • Question 9 of 20
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!