Answer:
The spring constant = 9.25 N/m
Explanation:
The equation of an object attached to a spring that is oscillating is
T = 2π√(m/k)
Where T = period of the oscillation, m = mass of the object, k = spring constant.
Making k the subject of the equation,
k = 4π²m/T²......................... Equation 1
Note: Period(T) is the time taken to complete one oscillation
Given: T = t/10 = 9.0/10 = 0.9 s, m = 190 g = 0.19 kg.
Constant: π = 3.14
Substitute these values into equation 1.
k = 4(3.14)²(0.19)/0.9²
k = 7.4933/0.81
k = 9.25 N/m
Thus the spring constant = 9.25 N/m
Explanation :
Our solar system was formed about 4.6 billion years ago. It is formed when gravity exerted low-density cloud of interstellar gas and dust. The massive cloud of gas and dust is called as Orion Nebula.
In a small area, the overdensity of clouds occurs. This caused the contraction, to begin. Due to this contraction the potential energy gets converted into kinetic energy of individual gas particles.
Hence the correct option is " materials were pulled together by the gravity". This is the one of the evidence used to indicate the beginning of the solar system.
When person is observing destructive interference at 0.20 m distance from the equidistant position then we can say that path difference must be equal to half of the wavelength
now we will have

now we know that
y = 0.20 m
d = 2.4 m
L = 10 m
now here we have


now frequency of wave is given as


<span>If the Earth rotated more slowly about its axis, your apparent weight would
A) increase.
B) decrease.
C) stay the same.
D) be zero.
</span>A) increase.