Answer:
a = -5/6 m/s²
Explanation:
v² = u² + 2as
a = (v² - u²) / 2s
a = (0² - 5²) / 2(15)
a = -5/6 m/s²
This assumes the initial velocity was in the positive direction.
The final velocity before takeoff is 104.96 m / s.
<u>Explanation:</u>
The last velocity of a given object over some time defines the final velocity. The final velocity of the object is given by the product of acceleration and time and adding this product to the initial velocity.
To calculate the final velocity,
V = u + at
where v represents the final velocity,
u represents the initial velocity,
a represents the acceleration
t represents the time taken.

v = 104.96 m / s.
Answer:
carbon has four unpaired electrons in its valence shell . hydrogen having one unpaired electron in its valence shell comes to bond with carbon by sharing a pair of electrons .since carbon needs 4 electrons to be stable, 4 hydrogen atoms take part in the bond . It's a covalent bond because the difference between the electronegativity of carbon and hydrogen is quite small .
Answer:
(a)
(b) I =428 
(c)
Explanation:
GIVEN
mass = 18.2 kg
radial arm length = 3.81 m
velocity = 49.8 m/s
mass of arm = 22.6 kg
we know using relation between linear velocity and angular velocity


for angular acceleration, use the following equation.

since 
here for one circle is 2 π radians. therefore for one quarter of a circle is π/2 radians
so for one quarter 

on solving

(b)
For the catapult,
moment of inertia


For the ball,



so total moment of inertia = 428 
(c)


<span>b. It ensures that measurements are taken from two points
that are very far apart.
Measurements taken six months apart are the farthest apart
that an astronomer can ever get ... they're on opposite sides
of the Earth's orbit !</span>