We can calculate years by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span>From the half-life data, we can calculate for k.
1/2(Ao) = Ao e^-k(1620)
<span>k = 4.28 x 10^-4
</span>
0.125 = 1 e^-<span>4.28 x 10^-4 (</span>t)
t = 4259 years
Answer:
Distance, some kind of distance or length.
Explanation:
Answer:
50 kg
Explanation:
Data:
Mass of bicycle = 10 kg
F = 168 N
a = 2.8 m/s²
Calculation:
F = ma Divide each side by m, Then
m = F/a
= 168/2.8
= 60 kg
m = mass of bicycle + Naoki's mass. Then
60 = 10 + Naoki's mass Subtract 10 from each side
Naoki's mass = 50 kg
<span>Equation:2H2(g) + O2(g) → 2H2O(g)
</span><span>
Smaller container means less volume, and the molecules will hit the walls of the container more frequently because there's less space available and the pressure will go up. I guess this would mean that the side with fewer moles would be favored as a result. We count the number of moles on the reactants and products and find that there are fewer moles on the product side, so I guess this would favor the product formation.
</span>