Answer:
Y > X > Z
Explanation:
The intermoecular forces refer to forces that exist between molecules of a substance. They are the secondary bond forces that hold particles of a substance together in a particular state of matter.
The shorter the distance between molecules, the greater the magnitude of intermolecular force between the molecules.
The molecules of Y are at the shortest distance from each other hence they have the highest magnitude of intermolecular forces. Followed by X and lastly Z with the greatest distance between the largest intermolecular distance.
D. All of the answers are true
Answer:
FAS concentration = 1.61*10^-4M
Explanation:
Beer Lambert's law relates the absorbance (A) of a substance to its concentration (c) as:

where ε = molar absorption coefficient
l = path length
A plot of 'A' vs 'c' gives a straight line with slope = εl
In addition absorbance (A) is related to % Transmittance (%T) as:
A = 2-log%T----(2)
For the FAS solution, the corresponding calibration fit is given as:
y = 3678(x) + 0.056
This implies that the slope = εl = 3678
It is given that %T = 25.6%

Based on equation(1):

Synthesis. Which is "<span>Noun. (plural syntheses) The formation of something complex or coherent by combining simpler things. (chemistry) The reaction of elements or compounds to form more complex compounds.".....According to www.dictionary.com.</span>
Answer:
Explanation:
We'll assume there is an excess of silver nitrate, so that all 12.0 moles of the magnesium (Mg) will react.
The balanced equation tells us we'll obtain 2 moles of Ag for every 1 mole of magnesium, for a molar ratio of 2/1.
Starting with 12.00 moles Mg, we would therefore hope to find twice that, or 24.00 moles of Ag.
To convert to grams, find the molar mass of Ag from the periodic table.
Ag has a molar mass of 107.9 (to 4 sig figs) grams/mole.
(24.00 moles)*(107.9 grams/mole) = 2590 grams (4 sig figs)
Hands off, it's mine.