We will use Arrehenius equation
lnK = lnA -( Ea / RT)
R = gas constant = 8.314 J / mol K
T = temperature = 25 C = 298 K
A = frequency factor
ln A = ln (1.5×10 ^11) = 25.73
Ea = activation energy = 56.9 kj/mol = 56900 J / mol
lnK = 25.73 - (56900 / 8.314 X 298) = 2.76
Taking antilog
K = 15.8
Answer:
So trees in temperate don't lose their leaves because the weather events aren't harsh enough.
Trees in tropical rainforest don't lose their leaves because they are a different type of tree known as evergreens that are green all year round.
Explanation:
Ok so first we'll define some things
Deciduous Trees= Trees that lose all of their leaves for part of the year.
Trees shed their leaves trees to try and survive harsh weather events.
Temperate deciduous trees lose their leaves in fall to better survive the winter conditions of extreme cold and reduced daylight.
Temperate rainforests = An area that doesn't experience extremely cold or extremely hot temperatures or what we would call harsh weather events.
Broad-leaved trees in tropical rainforests are known evergreen, they are known as this as they are green all year round.
Answer:
substance is related to the average kinetic energy of the particles of that substance
Explanation:
<h2>Answer : Option B) Ozone</h2><h3>Explanation :</h3>
The layer of atmosphere which contains a substance(Ozone) that was created from a product of living thins (oxygen) and protects living things (from harmful UV rays).
Oxygen in the atmosphere reacts in presence of UV rays and forms Ozone.
This ozone forms a protective layer around the earth and protects it from harmful UV rays.
Answer:
<u>The same as</u> can best fill the space
Explanation:
The law of conservation of mass states that matter cannot be created or destroyed in a chemical reaction. For example, when wood burns, the mass of the soot, ashes, and gases, equals the original mass of the charcoal and the oxygen when it first reacted.
It shows that when wood burns, it combines with oxygen and changes not only to ashes, but also to carbon dioxide and water vapor. The gases float off into the air, leaving behind just the ashes. Suppose you had measured the mass of the wood before it burned and the mass of the ashes after it burned. Also suppose you had been able to measure the oxygen used by the fire and the gases produced by the fire. What would you find? The total mass of matter after the fire would be the same as the total mass of matter before the burning.