The skeletal structure of an organic compound is an abbreviated representation of its molecular structure, they are quick and easy to draw.
For example, the following image shows the skeletal structure of a compound:
The peaks represent the carbons. We must remember that carbon can have a maximum of 4 bonds.
Now, I will show you how is the structure of this specific compound:
This is ternary alcohol, called 2-methyl-2-butanol. If you see carefully, you will notice that each carbon has 4 bonds. The functional groups present will be OH. The skeletal structure will be:
The mass of a sample of alcohol is found to be = m = 367 g
Hence, it is found out that by raising the temperature of the given product, the mass of alcohol would be 367 g.
Explanation:
The Energy of the sample given is q = 4780
We are required to find the mass of alcohol m = ?
Given that,
The specific heat given is represented by = c = 2.4 J/gC
The temperature given is ΔT = 5.43° C
The mass of sample of alcohol can be found as follows,
The formula is c = 
We can drive value of m bu shifting m on the left hand side,
m = 
mass of alcohol (m) = 
m = 367 g
Therefore, The mass of the given sample of alcohol is
m = 367g
It requires 4780 J of heat to raise the temperature by 5.43 C in the process which yields a mass of 367 g of alcohol.
Answer:
Most divergent plate boundaries are underwater and form submarine mountain ranges called oceanic spreading ridges. While the process of forming these mountain ranges is volcanic, volcanoes and earthquakes along oceanic spreading ridges are not as violent as they are at convergent plate boundaries.
Explanation:
Answer:
Explanation:
The given reaction equation is:
2A + 4B → C + 3D
We know the mass of compound A in the reaction above. We are to find the mass of compound D.
We simply work from the known mass to calculate the mass of the unkown compound D
Using the mole concept, we can find the unknown mass.
Procedures
- We first find the molar mass of the compound A from the atomic units of the constituent elements.
- We then use the molar mass of A to calculate its number of moles using the expression below:
Number of moles of A = 
- Using the known number of moles of A, we can work out the number of moles of D.
From the balanced equation of the reaction, it is shown that:
2 moles of compound A was used up to produced 3 moles of D
Then
x number of moles of A would give the number of moles of D
- Now that we know the number of moles of D, we can find its mass using the expression below:
Mass of D = number of moles of D x molar mass of D
1) CH2 (gas) + Br (solid) -> BrC (solid) + H2 (gas)
2) a) CH4 + Br2 -> CH3Br + HBr
2) b) methane + bromine is substitution because one hydrogen atom from methane is replaced by one bromine atom. addition reaction takes place when one molecule combines with another to form a larger molecule so therefore a molecule from X and bromine combine to form XBr.