Answer:
There are 180 milligrams of gold in the alloy
Step-by-step explanation:
because i know
Answer:
The correct option is;
DE = 2·(BC), AD = 2·(AB), and AE = 2·(AC)
Step-by-step explanation:
Given that we have;
1) The side AD of the angle m∠ADE corresponds to the side AB of the angle m∠ABC
2) The side DE of the angle m∠ADE corresponds to the side BC of the angle m∠ABC
3) The side AE of the angle m∠ADE corresponds to the side AC of the angle m∠ABC
Then when we have DE = 2·(BC), AD = 2·(AB), and AE = 2·(AC), we have by sin rule;
AE/(sin(m∠ADE)) = 2·(AC)/(sin(m∠ABC)) = AE/(sin(m∠ABC))
∴ (sin(m∠ADE)) = (sin(m∠ABC))
m∠ADE) = m∠ABC).
Answer: The answers is alternate interior angles.
Step-by-step explanation: First of all, the questions marks given in the figure are renamed in the attached figure as (a), (b), (c) and (d).
For (a): Since AC is parallel to A'C' and A'D is a transversal for these two parallel lines, so, ∠CDB' = ∠B'A'C', because these are alternate interior angles.
For (b): Since BC is parallel to B'C' and A'B' is a transversal, so ∠BEB' = ∠A'B'C', because these are alternate interior angles.
For (c): Since AB is parallel to A'B' and AD is a transversal, so ∠BAC = ∠CDB', because these are alternate interior angles.
For (d): Since AB is parallel to A'B' and BE is a transversal, so ∠ABC = ∠BEB', because these are alternate interior angles.
Thus, all the questions marks are the reasons that the given angles are equal because they are alternate interior angles.
Answer:
538 books should be tested.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
How many books should be tested to estimate the average force required to break the binding to within 0.08 lb with 99% confidence?
n books should be tested.
n is found when 
We have that 






Rounding up
538 books should be tested.