C3H8+3O2--->3CO2+8H
Therefore for every 1:3 there are 3 Carbon dioxides that form. That means find the limiting reactant from the two reactants.
5.5g(1mole C3H8/44.03g of C3H8)=0.1249 moled of C3H8 and if for every one C3H8 we can form three CO2. We can assume 0.3747 miles of CO2 will be produced.
15g of O2(1 mole O2/32g of O2)=0.4685moles O2 and if for every three O2 we can produce three CO2 we may assume a 1:1 ratio.
This means C3H8 will be your limiting reactant. Therefore 0.3747 moles of CO2 will be produced.
0.3747 moles of CO2(48.01 g of CO2/1 mole of CO2)= 17.99 grams of CO2
Answer:
The International Date Line passes through the mid-Pacific Ocean and roughly follows a 180 degrees longitude north-south
line on the Earth. It is located halfway round the world from the prime meridian—the zero degrees longitude established in Greenwich
The answer should be: <span>D. The reaction rate is equal in both directions
In the equilibrium state, the rate of reaction to the right is same as the reaction to the left. Because of this, the concentration of the reactant and product will be kept same.
It might seem like the reaction is stopped because there is no change in the concentration, but it wasn't. Adding a reactant or product will break the equilibrium state.</span>
Explanation:
The more reactive element replaces less reactive element during chemical reaction.
Since, potassium is more reactive than beryllium. When potassium reacts with beryllium choride, it replaces beryllium and forms potassium chloride and produces beryllium.