Choice B I think, because if the temperature decreases the particles move slower due to less kinetic energy, and thus won't collide as frequently.
Answer:
Chemical reactivity increases down a group and decreases from left to right of a period.
Explanation:
The higher the ionization energy is, the lower the reactivity is. Since the ionization energy is highest in the top right corner of the periodic table, we can assume that the most reactive elements are in the opposite bottom left corner. This is because the electrons that react are farther away from the nucleus thus experience less attraction to the nucleus (called nuclear shielding). Therefore their electrons are more easily removed than elements that don't ecperience nuclear shielding.
Here are a few examples :)
iodine (I2)
naphthalene
aresenic (As)
ferrocene
water (H2O)
carbon dioxide (CO2)
Hope this helps :)
Answer:
For the first question its C, Gas
For the second one table
Explanation:
The faster particles move, the more kinetic energy they have. Within a given substance, such as water, particles in the solid state have the least amount of kinetic energy. Particles in the liquid state move faster than particles in the solid state. Therefore, they have more kinetic energy.
Answer: The mass of electrons is mostly ignored because electrons are extremely small compared to neutrons and protons.
Explanation: A proton is about 1,836 times the size of an electron.
On the periodic table, the atomic number for each element can be found. This number is found by measuring the weight of 6.02 x 10^23 atoms of the element in grams. Electrons aren't ignored when finding exact math, but for the sake of simplification high school teachers will generally have you only count the number of protons and neutrons when calculating the mass of atoms.