Answer:
V_{average} =
, V_{average} = 2 V
Explanation:
he average or effective voltage of a wave is the value of the wave in a period
V_average = ∫ V dt
in this case the given volage is a square wave that can be described by the function
V (t) = 
to substitute in the equation let us separate the into two pairs
V_average = 
V_average = 
V_{average} = 
we evaluate V₀ = 4 V
V_{average} = 4 / 2)
V_{average} = 2 V
Answer:
d) 700 m/s
Explanation:
if k is the force constant and x is the maximum compression distance, then:
the potential energy the spring can acquire is given by:
U = 1/2×k×(x^2)
and, the kinetic energy system is given by:
K = 1/2×m×(v^2)
if Ki is the initial kinetic energy of the system, Ui is the initial kinetic energy of the system and Kf and Uf are final kinetic and potential energy respectively then, According to energy conservation:
initial energy = final energy
Ki +Ui = Kf +Uf
Ui = 0 J and Kf = 0J
Ki = Uf
1/2×m×(v^2) = 1/2×k×(x^2)
m×(v^2) = k×(x^2)
v^2 = k×(x^2)/m
= (500)×((21×10^-2)^2)/(19×10^-3 + 8)
= 2.75
v = 1.66 m/s
the v is the final velocity of the bullet block system, if m1 is the mass of bullet and M is the mass of the block and v1 is the initial velocity of the bullet while V is the initial velocity of the block, then by conservation linear momentum:
m1×v1 + M×V = v×(m1 + M) but V = 0 because the block is stationary, initially.
m1×v1 = v×(m1 + M)
v1 = v×(m + M)/(m1)
= (1.66)×(19×10^-3 + 8)/(19×10^-3)
= 699.86 m/s
≈ 700 m/s
Therefore, the velocity of the bullet just before it hits the block is 700 m/s.
Answer: The pressure in a liquid is different at different depths. Pressure increases as the depth increases. The pressure in a liquid is due to the weight of the column of water above. The greater pressure at the bottom would give a greater 'force per unit area' on the wall.
Explanation:
Answer:
Mike can travel 80 Km in 4 hours
Magnitude of initial velocity
<em>To calculate the </em><em>magnitude</em><em> of the </em><em>velocity</em><em> at any point in time, multiply the constant acceleration rate times the time difference and then add it to the </em><em>initial velocity.</em><em> As an example, if you dropped a rock off a cliff, its </em><em>velocity</em><em> increases by 32 feet per second, every second.</em>
<em />
<h2><em>Hope this helps you a lot ...</em></h2><h2><em>Good day :)</em></h2>