Cover your cough
Wash your hands
Keep a clean space
Avoid smoking
Stay active
Hope this helps :)
Answer:
44cm x 22cm
Explanation:
u= 10 cm
v= 1.1 cm
m=v/u= 1.1/10
m=11
hence the size of the image.
Answer:
The linear charge density is 5.19 X 10⁻⁶ C/m
Explanation:
The potential difference between two cylinders, is given as
V = (λ/2πε)ln(b/a)
where;
λ is the line charge density on the power line.
b is the distance between the power line = 1 m
a is the radius of the wire = 1.5 cm = 0.015 m
ε is the permittivity of free space = 8.9 X 10⁻¹² C
V*2πε = λ* ln(b/a)
3900 *(2π*8.9 x10⁻¹²)= λ *ln(1/0.015)
2.1812 X 10⁻⁷ = 4.1997* λ
λ = 5.19 X 10⁻⁶ C/m
Therefore, the linear charge density is 5.19 X 10⁻⁶ C/m
In order to persuade the electrons in the wire to flow, you need
a potential difference between the ends of the wire. Then the
electrons will want to get away from the more-negative end and
go to the more-positive end. If both ends of the wire are at the
same potential, then the electrons have no reason to go anywhere,
and they just stay where they are.
Choice-d says this.
Answer: a) 152 cm
b) 0.725 ms
c) 10°
Explanation:
Given
Frequency of the wave, f = 524 Hz
Speed of the wave, v = 345 m/s
Wavelength of the wave, λ = ?
The relation for wavelength is given by
λ = f/v, on substituting
λ = 524 / 345
λ = 1.52 m or 152 cm
T = 1/v
T = 0.0029 s
T = 2.9 ms.
Note that the phase change is 90°, thus the time required to change the phase by 90° is
t = 2.9 * (90 / 360)
t = 2.9 * 0.25
t = 0.725 ms
The phase difference at a particular instance 4.4 cm apart is
= (4.4 / 152) * 360
= 0.02895 * 360
= 10.422°
a) 152 cm
b) 0.725 ms
c) 10°