Question
What was the initial momentum of the bullet before collision?
Answer:
10 Kg.m/s
Explanation:
Momentum is a product of velocity of an object in m/s and its mass in kgs hence numerically expressed as p=mv where p is momentum, v is velocity and m is mass. Substituting m for 0.2 kg and v for 50 m/s then p=0.2*50=10 kg.m/s
60 N because 98N=mg (here g= 9.8 on earth) thus mass can be calculated which is 98/9.8 = 10kg
Now,new weight with g = 6m/s^2
=m×g' (here g' is new acceleration of the new planet)
= 10×6=60N
Answer:
An independent variable is a variable that is manipulated to determine the value of a dependent variable. The dependent variable is what is being measured in an experiment or evaluated in a mathematical equation and the independent variables are the inputs to that measurement.
Explanation:
Answer:
18.1347 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s² = a

Total height the ball falls is 2.4619+14.3 = 16.7619 m

The speed at which the stone reaches the ground is 18.1347 m/s
First, we need to know the amounts of the elements in the compound.
Tin (Sn)= 5.28 g
Fluorine (F) = 8.65 - 5.28 = 3.37 g
Convert these to units of moles by dividing the molar masses.
Tin (Sn)= 5.28 g / 118.71 g/mol = 0.044 mol
Fluorine (F) = 3.37 g / 19.00 g/mol = 0.177 mol
Divide both by the least number of moles of the two.
Tin (Sn)= 0.044 mol / 0.044 mol = 1
Fluorine (F) = 0.177 mol / 0.044 mol = 4
Therefore, the empirical formula would be:
SnF4