Question 4: The first one
Question 5: The fourth one
Question 6: The first one
Question 7: The third one
Use the ideal gas law:
PV = nRT
so, T = PV / nR
n=0.5
V= 120 dm^3 = 120 L (1 dm^3 = 1 L)
R = 1/12
P = 15,000 Pa = 0.147 atm (1 pa = 9.86 10^{-6} )
Put the values:
T = PV / nR
T = (0.147) (120) / (0.5) (1/12)
T= 426 K
Hept for 7, hence the number is seven.
<h3><u>Answer;</u></h3>
<em>-49 °C</em>
<h3><u>Explanation and solution;</u></h3>
- Considering the fact that, the specific heat capacity of aluminum is 0.903 J/g x C, and the heat of vaporization of water at 25 C is 44.0 KJ/mol.
Moles water = 0.48 g / 18.02 g/mol
=0.0266 moles
<em>Heat lost by water</em> = 0.0266 mol x 44.0 kJ/mol
=1.17 kJ => 1170 J
<em>But heat lost =heat gained</em>
<em>Therefore;</em> Heat gained by aluminium = 1170 J
1170 = 55 x 0.903 ( T - 25) = 49.7 T - 1242
1170 + 1242 = 49.7 T
T = 48.5 °C ( 49 °C <em>at two significant figures)</em>
<em>Hence</em>, final temperature = 49 °C