Answer:
Mole fraction of solute is 0.0462
Explanation:
To solve this we use the colligative property of lowering vapor pressure.
First of all, we search for vapor pressure of pure water at 25°C = 23.8 Torr
Now, we convert the Torr to mmHg. Ratio is 1:1, so 23.8 Torr is 23.8 mmHg.
Formula for lowering vapor pressure is:
ΔP = P° . Xm
Where ΔP = P' (Vapor pressure of solution) - P° (Vapor pressure of pure solvent)
Xm = mole fraction
24.9 mmHg - 23.8 mmHg = 23mmHg . Xm
Xm = (24.9 mmHg - 23.8 mmHg) / 23mmHg
Xm = 0.0462
Answer:
The solution is 10^-2 or 0.01M in HCl.
Explanation:
meaning of pH is "power of hydrogen".
what is the molar concentration of a HCl solution with pH=2?
Let say pH=2
[H+]=10^-2M
HCL is a strong acid that dissociates completely:
[H+]=[HCL]
Therefore solution is 10^-2 or 0.01M in HCL.
Owing to the arrangement of ions in NaCl, the structure has a high melting point and crystalline structure.
Ionic compounds are know to have a crystalline structure. This is because the ions in the compound are arranged into a crystal lattice. A crystal lattice gives a regular repeating structure of ions in the crystal.
As a result of this order in the crystal, the resultant sodium chloride structure has a high melting point and crystalline structure.
Learn more: brainly.com/question/17638582
Answer: The quantity of heat required is 358.644 J.
Explanation:
Given: Specific heat capacity = 
Mass = 1.50 g


Formula used to calculate heat energy is as follows.

where,
q = heat energy
m = mass
C = specific heat capacity
= initial temperature
= final temperature
Substitute the values into above formula as follows.

Thus, we can conclude that quantity of heat required is 358.644 J.