1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
4 years ago
7

When a certain rubber band is stretched a distance x, it exerts a restoring force of magnitude f = ax, where a is a constant. th

e work done by a person in stretching this rubber band from x = 0 to x = l is:?
Physics
1 answer:
Veseljchak [2.6K]4 years ago
4 0
Given:
F = ax
where
x = distance by which the rubber band is stretched
a =  constant

The work done in stretching the rubber band from x = 0 to x = L is
W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2}  [x^{2} ]_{0}^{L} =  \frac{aL^{2}}{2}

Answer:  \frac{aL^{2}}{2}

You might be interested in
Select each example of a projectile
mafiozo [28]
Baseball, javelin, and maybe the clock but not sure on that... Just say baseball and javelin
4 0
3 years ago
Read 2 more answers
A car changes chemical energy from fuel into thermal energy and ________ energy.
Shkiper50 [21]

Answer:

Mechanical energy

Explanation:

A car changes chemical energy from fuel into thermal energy and mechanical energy.

Mechanical energy can be defined as the type of energy that is possessed by an object due to its motion or position. Mechanical energy is the sum of potential energy and kinetic energy, that is, the sum of energy in motion and stored energy. Examples of mechanical energy includes driving a car, riding a bicycle, listening to music etc.

Types of mechanical energy

1. Motion energy (kinetic energy)

2. Stored energy(potential energy)

Mechanical energy = Kinetic energy + Potential energy

4 0
3 years ago
If youre going 70 miles an hour for 70 miles, how long would it take you to travel those 70 miles
Anna11 [10]
490 miles in total ur welcome
6 0
3 years ago
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
3 years ago
Which event is an example of a contact force?
Scorpion4ik [409]

Answer:

D. a person pulling a sled.

Explanation:

contact force only occurs when something directly comes in contact with another object.

a. is wrong because that is called magnetic force.

b. gravitational force

c. is an electrical force

4 0
4 years ago
Other questions:
  • How might observations of the sun's outermost layers reveal what's happening in the interior? and how could this information be
    13·2 answers
  • A weightlifter lifts a 125-kg barbell straight up 1.15 m in 2.5 s. What was the power expended by the weightlifter?
    14·1 answer
  • What is the speed of sound in dry air at 0°C? A. 316 meters/second B. 331 meters/second C. 346 meters/second D. 373 meters/secon
    14·2 answers
  • A student submerges an irregularly object in a graduated cylinder half filled with water. The level of the water in the cylinder
    15·1 answer
  • a ball is dropped from a height of 120 meters. If it takes 2.00 seconds for a ball to fall 60 meters, how long will it take the
    12·1 answer
  • Rank the work done on the charged particles from highest to lowest
    6·1 answer
  • List between six and eight student organizations either offered by your school or offered
    15·1 answer
  • A car is traveling at 30 m/s ( approximately 67 mph) on I-95 highway. The driver applies the brakes and the car comes to a stop
    14·1 answer
  • Miguel is holding a 5 kg box.
    5·1 answer
  • Jane, looking for Tarzan, is running at top speed (6.0 m/s ) and grabs a vine hanging vertically from a tall tree in the jungle.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!