<span>3. The attempt at a solution So basically what I did was divided into components. x: (3)(2000) = (3000)*v_x y: (v_vw)*(10000) = (3000)*v_y v_x, v_y is the velocity (after collision) in the x and y direction, respectively, of both cars stuck together (since it is an inelastic collision). v_vw is the initial velocity of the Volkswagen. Now what I did was that the angle is 35 degrees north of east. So basically made a triangle and figured that tan(35) = (v_y)/(v_x). This means (v_x)*(tan35) = v_y. Then, I simplified the component equations to get: x: 2 = v_x y: v_vw = 3*v_y Then plugging in for v_y, I got: v_vw = 3(2)(tan35) = 4.2 m/s as the velocity of the volkswagen. However, the answer key says 8.6 m/s. Could someone please help me out? Thanks Phys.org - latest science and technology news stories on Phys.org • Game over? Computer beats human champ in ancient Chinese game • Simplifying solar cells with a new mix of materials • Imaged 'jets' reveal cerium's post-shock inner strength Oct 24, 2012 #2 ehild Homework Helper Gold Member What directions you call x and y?
Reference https://www.physicsforums.com/threads/2d-momentum-problem.646613/</span>
Answer: τ = 0
Explanation:
At constant angular velocity there is no angular acceleration therefore no torque.
τ = Iα
The June solstice in the Northern hemisphere is the summer solstice. The June Solstice in the Southern hemisphere is the winter solstice. The summer solstice is equivalent to the longest day while the winter solstice is equivalent to the shortest day. Therefore on the local sky, when is the June solstice we have have the longest day (longest path of sun in the sky) in the Northern hemisphere and the shortest day (shortest path of sun in the sky) in the Southern hemisphere.