Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.
Answer:
In the kinetic molecular theory of gas behavior; the assumption is made that gas molecules move with a kinetic energy equal to their centigrade temperature_ move rapidly in random directions: are close together in their container which exerts pressure_ are attracted to each other by strong forces.
Explanation:
Answer:
Total pressure of the mixture is 12.2 atm
Explanation:
Let's apply the Ideal Gases law to solve this
Total pressure . V = Total moles . R . T
Total moles = 0.4 m of He and 0.6 mole of Ne → 1 mol
P . 2L = 1 mol . 0.082 L.atm/mol. K . 298K
P = ( 1 mol . 0.082 L.atm/mol. K . 298K) /2L
P = 12.2 atm
Answer: 12 neutrons
Explanation: The mass number of an element tells us the number of protons AND neutrons in an atom (the two particles that have a measurable mass). Sodium has a mass number of 23amu. Since sodium has 11 protons, the number of neutrons must be 23 – 11 = 12 neutrons.