Many atoms if they are radioactive isotopes will loss protons and neutrons as radiation in order to gain and become more stable
hope that helps
Radius of Xenon = 1.3Ă—10â’8 cm
Volume = 100 ml = 0.1 L
Pressure P = 1.2 atm = 121.59 Kpa
Temperature = 281 K
R = Gas Constant = 8.31 J mol^-1 K^-1
Now find the number of atoms
PV = nRT => n = PV / RT
n = (121.59 x 0.1) / (8.31 x 281) = / 2335.11 = 0.0052
Number of atoms in a mole is same as Avogadro constant A, which is 6.02 x
10^23 particles.
n = number of atoms= 0.0052
N = number of particles
Avogadro constant A = 6.02 x 10^23
n = N/A => N = n x A = 0.0052 x 6.02 x 106^23 = 3.13 x 10^20
Volume of Xe atom which would be a sphere = (4/3) x pi x r^3
Volume = = (4/3) x 3.14 x (1.3Ă—10â’8)^3 = 9.2 x 10^-24
Volume occupied by these particles = n x Volume = 3.13 x 10^20 x 9.2 x
10^-24 = 0.00288
Fraction of volume will be = 0.00288 / 0.1 = 0.0288
An air mass is a large volume of air in the atmosphere thats mostly uniform in temperature and moisture. Air masses can extend thousands of kilometers across the surface of the Earth, and can reach from ground level to the stratosphere/10 miles into the atmosphere. an air mass over northern Canada is a continental polar air mass and is cold and dry. One that forms over the Indian Ocean is called a maritime tropical air mass and is warm and humid.
Answer:
<h2>119.60 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>119.60 moles</h3>
Hope this helps you