Answer:

Explanation:
In this case, we can start with the reaction:

If we check the reaction, we will have 2 X and Y atoms on both sides. So, <u>the reaction is balanced</u>. Now, the problem give to us two amounts of reagents. Therefore, we have to find the <u>limiting reagent</u>. The first step then is to find the moles of each compound using the <u>molar mass</u>:


Now, we can <u>divide by the coefficient</u> of each compound (given by the balanced reaction):


The smallest value is for "X", therefore this is our <u>limiting reagent</u>. Now, if we use the <u>molar ratio</u> between "X" and "XY" we can calculate the moles of XY, so:

Finally, with the molar mass of "XY" we can calculate the grams. Now, we know that 1 mol X = 85 g X and 1 mol
= 48 g
(therefore 1 mol Y = 24 g Y). With this in mind the <u>molar mass of XY</u> would be 85+24 = 109 g/mol. With this in mind:

I hope it helps!
Answer:
more rounded the grains are the more they have been moved around
Explanation:
Generally – the more rounded the grains are the more they have been moved around (i.e. the longer the length of time or distance they have moved). Angular grains cannot have travelled far
geolsoc.org.uk
Answer:
The ionization equation is
⇄
(1)
Explanation:
The ionization equation is
⇄
(1)
As the Bronsted definition sais, an acid is a substance with the ability to give protons thus, H2PO4 is the acid and HPO42- is the conjugate base.
The Ka expression is the ratio between the concentration of products and reactants of the equilibrium reaction so,
![Ka = \frac{[HPO_{4}^{-2}] [H_{3}O^{+}]}{[H_{2}PO_{4}^{-}] [H_{2}O]} = 6.2x10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BHPO_%7B4%7D%5E%7B-2%7D%5D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BH_%7B2%7DPO_%7B4%7D%5E%7B-%7D%5D%20%5BH_%7B2%7DO%5D%7D%20%3D%206.2x10%5E%7B-8%7D)
The pKa is

The pKa of H2CO3 is 6,35, thus this a stronger acid than H2PO4. The higher the pKa of an acid greater the capacity to donate protons.
In the body H2CO3 is a more optimal buffer for regulating pH due to the combination of the two acid-base equilibriums and the two pKa.
If the urine is acidified, according to Le Chatlier's Principle the equilibrium (1) moves to the left neutralizing the excess proton concentration.
Answer: J
Explanation: when a object hits something it has a equal and opposite reaction pushing it back