Answer:
384.2 K
Explanation:
First we convert 27 °C to K:
- 27 °C + 273.16 = 300.16 K
With the absolute temperature we can use <em>Charles' law </em>to solve this problem. This law states that at constant pressure:
Where in this case:
We input the data:
300.16 K * 1600 m³ = T₂ * 1250 m³
And solve for T₂:
T₂ = 384.2 K
Answer:
33300J
Explanation:
Given parameters:
Mass of ice = 100g
Unknown:
Amount of energy = ?
Solution:
This is a phase change process from solid to liquid. In this case, the latent heat of melting of ice is 3.33 x 10⁵ J/kg.
So;
H = mL
m is the mass
L is the latent heat of melting ice
Now, insert the parameters and solve;
H = mL
mass from gram to kilogram;
100g gives 0.1kg
H = 0.1 x 3.33 x 10⁵ = 33300J
Here is the answer for the three of them
<span>N20 = 16 e-
</span><span>SeCl2 =20
</span><span>PBr3 = 26
Remember that t</span><span>o find the valence electrons in an atom you need to identify what group the element is in. An element in group 1A has 1 valence electron. If the element is in group 2A, then it has two valence electrons.</span>
The amount of kinetic energy required for the molecules to break free of the intermolecular forced in the liquid is raised because the other ones don’t make sense