Answer:
{x,y}={−5,−7}
Explain:
// Solve equation [2] for the variable y [2] 3y = 7x + 14 [2] y = 7x/3 + 14/3 // Plug this in for variable y in equation [1] [1] 8x - 3•(7x/3+14/3) = -19 [1] x = -5 // Solve equation [1] for the variable x [1] x = - 5 // By now we know this much : x = -5 y = 7x/3+14/3 // Use the x value to solve for y y = (7/3)(-5)+14/3 = -7 Solution : {x,y} = {-5,-7}
Hoped I helped
Answer:
y = -1x -3
Step-by-step explanation:
Answer:
<em>X</em><em>. </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>f(</em><em>x)</em>
0 -10
3 -4
5 0
6 2
then now polt the following points on
graph
(<em>0</em><em>,</em><em>-</em><em>1</em><em>0</em><em>)</em><em>,</em><em>(</em><em>3</em><em>,</em><em>-</em><em>4</em><em>)</em><em>,</em><em>(</em><em>5</em><em>,</em><em>0</em><em>)</em><em>,</em><em>(</em><em>6</em><em>,</em><em>2</em><em>)</em>
One solution was found : t ≤ -13 (number 4)
Pull out like factors :
-3t - 39 = -3 • (t + 13)
Divide both sides by -3
Remember to flip the inequality sign:
Solve Basic Inequality :
Subtract 13 from both sides to get t≤−13
<h3>
Therefore either
or, 
</h3>
Step-by-step explanation:

here a = 3 ,b = 9 and c= -6



Therefore either
or, 