Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 53.3 mg
m (final mass after time T) = ? (in mg)
x (number of periods elapsed) = ?
P (Half-life) = 10.0 minutes
T (Elapsed time for sample reduction) = 25.9 minutes
Let's find the number of periods elapsed (x), let us see:






Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:




I Hope this helps, greetings ... DexteR! =)
Last option that is none of above is right answer.
Answer;
The above statement is true
upon heating a copper sample will expand, leading to a lower density
Explanation;
-The density of solids decreased with increase in temperature and vice versa. The increase in temperature causes the volume of the solid to increase which as a result decreases the density as Density=Mass/Volume. The temperature of a body is the average kinetic energy of the molecules present in it.
In other words; The temperature of a body is the average kinetic energy of the molecules present in it. Therefore; when heat is supplied ( or temperature is increased) the average kinetic energy increases which increases the volume and thus density decreases.
Because a copper ion looses electrons, meaning it's negatively charged, and positives and negatives attract.