Answer:

Explanation:
Hello,
In this case, the dissociation reaction is:

For which the equilibrium expression is:
![Ksp=[Pb^{2+}][I^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5BI%5E-%5D%5E2)
Thus, since the saturated solution is 0.064g/100 mL at 20 °C we need to compute the molar solubility by using its molar mass (461.2 g/mol)

In such a way, since the mole ratio between lead (II) iodide to lead (II) and iodide ions is 1:1 and 1:2 respectively, the concentration of each ion turns out:
![[Pb^{2+}]=1.39x10^{-3}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D1.39x10%5E%7B-3%7DM)
![[I^-]=1.39x10^{-3}M*2=2.78x10^{-3}M](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D1.39x10%5E%7B-3%7DM%2A2%3D2.78x10%5E%7B-3%7DM)
Thereby, the solubility product results:

Regards.
Answer: 2.17mol/L
Explanation:
C=n/V
n: 0.217mol
V: 100.0mL
1. Convert mL to L (100.0mL/1000 = 0.01L)
2. Put numbers into equation (C= 0.217/0.01L)
3. Molarity is 2.17mol/L
Answer:
What are large, relatively flat areas? ... Why are coastal plains also called lowlands? ... What is a grassy wetland usually flooded with water? ... What rises steeply from the land around them? ... flat raised landform made up of nearly horizontal rocks that have been uplifted ... distances in degrees north or south the equator.
Explanation: