Lets do process of elimination!
A. Breaking glass - That is a psychical change because if you break it, it is still glass. It didn't change to another substance.
B. Melting ice on a windshield - During the melting process, there is no chemical change, and therefore, no new substance is created.
C. Burning gasoline - When gas burns it usually combines with oxygen to give carbon dioxide, water etc. It is a chemical change.
D. Denting a bumper - The bumper is still a bumper, only thing is it has a dent in it. The properties did not change, meaning no chemical change.
It's B - convection that is correct...
The formula of compound is LiClO4.3H2O
<em><u>calculation</u></em>
- <em><u> </u></em>find the mole of each element
that is moles for Li,Cl,O and that of H2O
- moles = % composition/ molar mass
For Li = 4.330/ 6.94 g/mol= 0.624 moles
Cl=22.10/35.5=0.623 moles
39.89/16 g/mol =2.493 moles
H20= 33.69/18 g/mol= 1.872 moles
- find the mole ratio by dividing each moles by smallest number of mole ( 0.624 moles)
that is for Li= 0.624/0.623= 1
Cl= 0.623/0.623=1
O = 2.493/0.623 =4
H2O= 1.872/0.623=3
<h3>Therefore the formula=LiClO4.3H2O</h3><h3 />
Answer: The volume of 0.640 grams of
gas at Standard Temperature and Pressure (STP) is 0.449 L.
Explanation:
Given: Mass of
gas = 0.640 g
Pressure = 1.0 atm
Temperature = 273 K
As number of moles is the mass of substance divided by its molar mass.
So, moles of
(molar mass = 32.0 g/mol) is as follows.

Now, ideal gas equation is used to calculate the volume as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

Thus, we can conclude that the volume of 0.640 grams of
gas at Standard Temperature and Pressure (STP) is 0.449 L.
Almost always, the first way in which biology researchers present the results of their latest research is to discuss the results of previous research that they want to build off of.