Answer:
The mass of the neon gas m = 1.214 kg
Explanation:
Pressure = 3 atm = 304 k pa
Volume = 0.57 L = 0.00057 
Temperature = 75 °c = 348 K
Universal gas constant = 0.0821 
We have to change the unit of this constant. it may be written as
Universal gas constant = 8.314 
Gas constant for neon =
= 0.41 
From ideal gas equation,
P V = m R T ------- (1)
We have all the variables except m. so we have to solve this equation for mass (m).
⇒ 304 ×
× 0.00057 = m × 0.41 × 348
⇒ 173.28 = 142.68 × m
⇒ m = 1.214 kg
This is the mass of the neon gas.
Answer:
negative, positive, increase
Explanation:
From the given question,
During the formation of bond, between two atoms with difference between their electronegativity-
- The more electronegative atom, will pull the electrons towards itself , and hence acquires a partial negative charge,
And,
- The less electronegative atom, will acquire a partial positive charge.
- The more the difference between the electronegativity of the atoms, the more would be the magnitude of partial charge.
- And, the less would be the difference between the electronegativity of the atoms, the lesser would be the magnitude of partial charge.
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of sodium carbonate and nickel (II) chloride is given as:

Ionic form of the above equation follows:

As, sodium and chloride ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.
Answer:
-209 kJ
Explanation:
I did the math. You're welcome ;)
Answer:
it has made the study of chemistry systematic and easy. it acts as an aid to memory