Noble gases react very unwillingly, because the outermost shell of electrons orbiting the nucleus is full, giving these gases no incentive to swap electrons with other elements. As a result, there are very few compounds made with noble gases. Like its noble gas comrades, neon is odorless and colorless.
ANS: density = 13.41 g/ml
Density (d) of a substance is the mass (m) occupied by it in a given volume (v).
Density = mass/volume
i.e. d = m/v
m = (d) v -----(1)
The given equation from the plot of weight vs volume is :
y = 13.41 x ----(2)
Based on equations (1) and (2) we can deduce that the density of the metal is 13.41 g/ml
What is the solubility of barium chromate in parts per million?
*parts per million = Grams of Solute/grams of solution X 10^6 (which is ppm)
2.787 x 10^-3g/L x 1L/1000g x 10^6 = 0.02779, or 2.78 x 10^-2ppm
Answer in parts per million to three significant figures =2.78ppm
this is correct for the pearson mastering chemistry question
Answer:
it needs two electrons in the first and eight to fill the second.
Explanation:
Because neon has two atomic shells, it needs two electrons in the first and eight to fill the second. Neon has a total of ten electrons which means two filled shells.
Answer:
58.0 g/mol
Explanation:
The reaction that takes place is:
- MCl₂ + 2AgNO₃ → 2AgCl + M(NO₃)₂
First we <u>calculate how many moles of silver chloride</u> were produced, using its <em>molar mass</em>:
- 6.41 g AgCl ÷ 143.32 g/mol = 0.0447 mol AgCl
Then we <u>convert AgCl moles into MCl₂ moles</u>, using the <em>stoichiometric ratio</em>:
- 0.0447 mol AgCl *
= 0.0224 mol MCl₂
Now we<u> calculate the molar mass of MCl₂</u>, using the original<em> mass of the sample</em>:
- 2.86 g / 0.0224 mol = 127.68 g/mol
We can write the molar mass of MCl₂ as:
- Molar Mass MCl₂ = Molar Mass of M + (Molar Mass of Cl)*2
- 127.68 g/mol = Molar Mass of M + (35.45 g/mol)*2
Finally we<u> calculate the molar mass</u> of M:
- Molar Mass of M = 57 g/mol
The closest option is 58.0 g/mol.