1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
3 years ago
9

I need help answering these problems. Im dealing with Systems of Linear Equations using an inverse. I posted a pic on how to do

it, plz show the work

Mathematics
1 answer:
notsponge [240]3 years ago
5 0
1.

\begin{cases}4x+3y=11\\-4x+6y=-2\end{cases}\\\\\\\\  
\left[\begin{array}{cc}4&3\\-4&6\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}11\\-2\end{array}\right]\\\\\\\\A=\left[\begin{array}{cc}4&3\\-4&6\end{array}\right]\\\\\\\\A^{-1}=\dfrac{1}{4\cdot6-3\cdot(-4)}\left[\begin{array}{cc}6&-3\\4&4\end{array}\right]=\dfrac{1}{24+12}\left[\begin{array}{cc}6&-3\\4&4\end{array}\right]=

=\dfrac{1}{36}\left[\begin{array}{cc}6&-3\\4&4\end{array}\right]=\left[\begin{array}{cc}\frac{1}{6}&-\frac{1}{12}\\\\\frac{1}{9}&\frac{1}{9}\end{array}\right]

so:

\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{cc}\frac{1}{6}&-\frac{1}{12}\\\\\frac{1}{9}&\frac{1}{9}\end{array}\right]\left[\begin{array}{c}11\\-2\end{array}\right]=\left[\begin{array}{c}\frac{11}{6}-\frac{-2}{12}\\\\\frac{11}{9}+\frac{-2}{9}\end{array}\right]=\left[\begin{array}{c}\frac{22}{12}+\frac{2}{12}\\\\\frac{11}{9}-\frac{2}{9}\end{array}\right]=


=\left[\begin{array}{c}\frac{24}{12}\\\\\frac{9}{9}\end{array}\right]=\left[\begin{array}{c}2\\1\end{array}\right]

Answer is \boxed{(2,1)}


2.

\begin{cases}2x+6y=-16\\6x+6y=-24\end{cases}\\\\\\\\ \left[\begin{array}{cc}2&6\\6&6\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}-16\\-24\end{array}\right]\\\\\\\\A=\left[\begin{array}{cc}2&6\\6&6\end{array}\right]\\\\\\\\A^{-1}=\dfrac{1}{2\cdot6-6\cdot6}\left[\begin{array}{cc}6&-6\\-6&2\end{array}\right]=\dfrac{1}{12-36}\left[\begin{array}{cc}6&-6\\-6&2\end{array}\right]=

=\dfrac{1}{-24}\left[\begin{array}{cc}6&-6\\-6&2\end{array}\right]=\left[\begin{array}{cc}-\frac{1}{4}&\frac{1}{4}\\\\\frac{1}{4}&-\frac{1}{12}\end{array}\right]

so:

\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{cc}-\frac{1}{4}&\frac{1}{4}\\\\\frac{1}{4}&-\frac{1}{12}\end{array}\right]\left[\begin{array}{c}-16\\-24\end{array}\right]=\left[\begin{array}{c}-\frac{-16}{4}+\frac{-24}{4}\\\\\frac{-16}{4}-\frac{-24}{12}\end{array}\right]=\left[\begin{array}{c}4-6\\-4+2\end{array}\right]=\\\\\\=\left[\begin{array}{c}-2\\-2\end{array}\right]

Answer is \boxed{(-2,-2)}


3.

\begin{cases}-2x+3y=9\\2x-4y=-16\end{cases}\\\\\\\\ \left[\begin{array}{cc}-2&3\\2&-4\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}9\\-16\end{array}\right]\\\\\\\\A=\left[\begin{array}{cc}-2&3\\2&-4\end{array}\right]\\\\\\\\A^{-1}=\dfrac{1}{-2\cdot(-4)-3\cdot2}\left[\begin{array}{cc}-4&-3\\-2&-2\end{array}\right]=\dfrac{1}{8-6}\left[\begin{array}{cc}-4&-3\\-2&-2\end{array}\right]=

=\dfrac{1}{2}\left[\begin{array}{cc}-4&-3\\-2&-2\end{array}\right]=\left[\begin{array}{cc}-2&-\frac{3}{2}\\\\-1&-1\end{array}\right]

so:

\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{cc}-2&-\frac{3}{2}\\\\-1&-1\end{array}\right]\left[\begin{array}{c}9\\-16\end{array}\right]=\left[\begin{array}{c}-2\cdot9-\frac{3\cdot(-16)}{2}\\\\-9-(-16)\end{array}\right]=\\\\\\=\left[\begin{array}{c}-18+24\\-9+16\end{array}\right]=\left[\begin{array}{c}6\\7\end{array}\right]

Answer is \boxed{(6,7)}
You might be interested in
What is the value of x?
laiz [17]

yyyyyessssssss oooooo

5 0
4 years ago
Point G is the centroid of the right △ABC with m∠C=90° and m∠B=30°. Find AG if CG=4 ft.
o-na [289]

Answer: \text{Length of AG=}\frac{2\sqrt{63}}{3}

Explanation:  

Please follow the diagram in attachment.  

As we know median from vertex C to hypotenuse is CM  

\therefore CM=\frac{1}{2}AB

We are given length of CG=4  

Median divide by centroid 2:1  

CG:GM=2:1  

Where, CG=4

\therefore GM=2 ft

Length of CM=4+2= 6 ft  

\therefore CM=\frac{1}{2}AB\Rightarrow AB=12

In \triangle ABC, \angle C=90^0

Using trigonometry ratio identities  

AC=AB\sin 30^0\Rightarrow AC=6 ft

BC=AB\cos 30^0\Rightarrow BC=6\sqrt{3} ft  

CN=\frac{1}{2}BC\Rightarrow CN=3\sqrt{3} ft

In \triangle CAN, \angle C=90^0  

Using pythagoreous theorem  

AN=\sqrt{6^2+(3\sqrt{3})^2\Rightarrow \sqrt{63}

Length of AG=2/3 AN

\text{Length of AG=}\frac{2\sqrt{63}}{3} ft


5 0
3 years ago
Write the equation of the line in standard form <br><br> 4xy + 2y = 9
padilas [110]

Answer: I think the answer is the same thing I can’t show a Step-by-step explanation because Math-way requires a premium to show a step-by-step explanation, anyway the answer is 4xy + 2y = 9, I’m sorry about that. :(

Step-by-step explanation: Well anyway, The standard form of a linear equation is Ax+By=C.

6 0
3 years ago
What is the exponent of x in in the expression -4x^3y^2 + 6
liberstina [14]

Answer:

3

Step-by-step explanation:

- 4x³y² + 6

the x is raised to the power of 3 , that is exponent of x is 3

4 0
2 years ago
Lines 3x-2y+7=0 and 6x+ay-18=0 is perpendicular. What is the value of a?
BlackZzzverrR [31]

Answer:

\boxed{\sf a = 9 }

Step-by-step explanation:

Two lines are given to us which are perpendicular to each other and we need to find out the value of a . The given equations are ,

\sf\longrightarrow 3x - 2y +7=0

\sf\longrightarrow 6x +ay -18 = 0

Step 1 : <u>Conver</u><u>t</u><u> </u><u>the </u><u>equations</u><u> in</u><u> </u><u>slope</u><u> intercept</u><u> form</u><u> </u><u>of</u><u> the</u><u> line</u><u> </u><u>.</u>

\sf\longrightarrow y = \dfrac{3x}{2} +\dfrac{ 7 }{2}

and ,

\sf\longrightarrow y = -\dfrac{6x }{a}+\dfrac{18}{a}

Step 2: <u>Find </u><u>the</u><u> </u><u>slope</u><u> of</u><u> the</u><u> </u><u>lines </u><u>:</u><u>-</u>

Now we know that the product of slope of two perpendicular lines is -1. Therefore , from Slope Intercept Form of the line we can say that the slope of first line is ,

\sf\longrightarrow Slope_1 = \dfrac{3}{2}

And the slope of the second line is ,

\sf\longrightarrow Slope_2 =\dfrac{-6}{a}

Step 3: <u>Multiply</u><u> </u><u>the </u><u>slopes </u><u>:</u><u>-</u><u> </u>

\sf\longrightarrow \dfrac{3}{2}\times \dfrac{-6}{a}= -1

Multiply ,

\sf\longrightarrow \dfrac{-9}{a}= -1

Multiply both sides by a ,

\sf\longrightarrow (-1)a = -9

Divide both sides by -1 ,

\sf\longrightarrow \boxed{\blue{\sf a = 9 }}

<u>Hence </u><u>the</u><u> </u><u>value</u><u> of</u><u> a</u><u> </u><u>is </u><u>9</u><u> </u><u>.</u>

8 0
3 years ago
Other questions:
  • Evaluate the expression when a=7 and b=4<br><br> 36/b+a
    15·1 answer
  • Mitzi has 38 coins.She divides the coins equally between herself and her 3 brothers.How many coins does each person get?Are any
    6·1 answer
  • Which number is a solution of the inequality? b &gt; 11.3; 9 –14 15 4
    5·1 answer
  • 98 POINTS AVAILABLE
    15·2 answers
  • The price that a company charged for a basketball hoop is given by the equation 50-x^2 where x is the number of hoops that are p
    6·2 answers
  • During a onemonth period, a car company's stock price went from $99.24 to $45.19 per share.
    8·1 answer
  • Explain how to use a pattern to find the product of a power of 10 and a decimal
    8·1 answer
  • I WILL GIVE BRAINLIEST TO WHOEVER ANSWERS ALL 5 QUESTIONS AND I WILL ALSO GIVE 11 POINTS. PLEASE HELP ME I NEED IT SO MUCH.
    15·1 answer
  • What is the rate of change between ( 24, 22) and ( 19, 1872​
    8·1 answer
  • Divide. Round your answer to the nearest tenth.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!