Answer:True
Explanation:
True
Even though it is easier to concentrate on the urgent and sometimes specific issues of a given project, project managers and all other personnel must bear in mind the influence of any project on the wants and needs of the entire system or organization.
A Project manager must perform following duties
- Planning Project resources
- Lead the team
- Time management
- Budget
- Documentation
Answer:
(a) 

(b) Kinetic Energy of planet with mass m₁, is KE₁ = 1.068×10³² J
Kinetic Energy of planet with mass m₂, KE₂ = 2.6696×10³¹ J
Explanation:
Here we have when their distance is d apart

Energy is given by

Conservation of linear momentum gives
m₁·v₁ = m₂·v₂
From which
v₂ = m₁·v₁/m₂
At equilibrium, we have;
which gives
multiplying both sides by m₂/m₁, we have

Such that v₁ = 

Similarly, with v₁ = m₂·v₂/m₁, we have

From which we have;
and

The relative velocity = v₁ + v₂ =
v₁ + v₂ = 
(b) The kinetic energy KE = 

Just before they collide, d = r₁ + r₂ = 3×10⁶+5×10⁶ = 8×10⁶ m
= 10333.696 m/s
=2583.424 m/s
KE₁ = 0.5×2.0×10²⁴× 10333.696² = 1.068×10³² J
KE₂ = 0.5×8.0×10²⁴× 2583.424² = 2.6696×10³¹ J.
Answer:
An electron orbital describes a three-dimensional space where an electron can be found 90% of the time.
Explanation:
According to Heisenberg's theory we cannot observe the position and velocity of an electron in an orbit, but if they were around the nucleus (in orbit), it would be possible to know its velocity and position, which would be contrary to the principle of Heisenberg So we can say that no electron revolves around a certain orbit around the nucleus, so we can only predict if the electron will be in the right position at the right time.
From there we find two definitions for electron orbital let's see:
- Orbital is considered the region of space, where each electron spends most of its time.
- Orbital is considered the region of space that is most likely to find an electron.
When you have to convert a quantity you need to multiply by a fraction whose value is 1 but has different units of measurements.
In your case you have:

You will have two fractions: one that transforms grams into kilograms and one <span>that transforms</span> cm³ into m³. You need to position the quantities in such a way you can eliminate the original ones, therefore:

Now, you can make the calculations and you get:

=

Therefore your answer is:
1000kg/m³