London, it has hosted the 1908, 1948 and the 2012 summer olympics
Answer:
<em>The maximum voltage that can be applied without damaging the resistor is 4.85 V</em>
Explanation:
<u>Electric Power in a Resistor</u>
Given a resistor or resistance R connected to a circuit of voltage V carrying a current I. The relation between these three magnitudes is given by Ohm's Law:
V = R.I
The dissipated power P of a resistor can be calculated by the following equation, known as Joule's first law:

Solving the first equation for I:

Substituting in the second equation:

Simplifying:

Solving for V:

The resistor has a resistance of R=47Ω and can hold a maximum power of P=0.5 W, thus the maximum voltage is:


V = 4.85 V
The maximum voltage that can be applied without damaging the resistor is 4.85 V
By definition we have to:
LOG (k2 / k1)=(-Ea/R)*(1/T1-1/T2)
Where,
k1 = 0.0117 s-1
K2 = 0.689 s-1
T1 = 400.0 k
T2 = 450.0 k
R is the ideal gas constant
R = 8.314 KJ / (Kmol * K)
Substituting
ln (0.0117/0.689)=-Ea/(8.314)*((1/400)-(1/450))
Clearing Ea:
Ea = 122 kJ
answer
<span> the activation energy in kilojoules for this reaction is
</span> Ea = 122 kJ
<span>
</span>
<h2>
Answer: destroy all information about its speed or momentum</h2>
The Heisenberg uncertainty principle postulates that the fact that <u>each particle has a wave associated with it</u>, imposes restrictions on the ability to determine its <u>position</u> and <u>speed</u> at the same time.
In other words:
<h2>It is impossible to measure <u>simultaneously </u>(according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle. </h2>
So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity.
It should be noted that this uncertainty does not derive from the measurement instruments, but from the measurement itself. Because, even with the most precise devices, the uncertainty in the measurement continues to exist.
Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
Answer:
45 kg is the mass of a table that weights 441 newton.