1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
2 years ago
5

In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st

ation stops. The more stops there are, the slower the train’s average speed. To get an idea of this problem, calculate the time it takes a train to make a 15.0-km trip in two situations: (a) the stations at which the trains must stop are 3.0 km apart (a total of 6 stations, including those at the ends); and (b) the stations are 5.0 km apart (4 stations total). Assume that at each station the train accelerates at a rate 1.1 m/s2 of until it reaches 95 km/h, then stays at this speed until its brakes are applied for arrival at the next station, at which time it decelerates at-2.0 m/s2 Assume it stops at each intermediate station for 22 s.
Physics
1 answer:
bekas [8.4K]2 years ago
7 0

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
You might be interested in
What information is given by the formula of an ionic compound?
Sergio [31]
MgCl2 is ionic compound.........Mg +2 and Cl -1
both charges are cross multiplied to each element......formula tells us that to balance the positive and negative charges on both sides they are cross multiplied........MgCl2......meaning there is one atom of Mg and 2 atoms of Cl.......

HOPE IT HELPS !!!
4 0
3 years ago
A student jobs around a square park two times. Starting and ending at the gate to the park. The square jogging track is 40 meter
olga nikolaevna [1]
The answer would be the first one
3 0
3 years ago
Read 2 more answers
One mole of a substance contains 6.02 × 1023 protons and an equal number of electrons. If the protons could somehow be separated
Aleksandr [31]

Explanation:

it is almost zero .this is because the distance and the electrostatic force are inversely proportional

8 0
2 years ago
What are three examples of constructive forces
Olin [163]
The three main constructive forces are crustal deformation, volcanic eruptions, and deposition of sediment.
5 0
3 years ago
A 53 kg crate is at rest on a level floor, and the coefficient of kinetic friction is 0.36. The acceleration of gravity is 9.8 m
tino4ka555 [31]

Answer:

42.6 m

Explanation:

mass of crate m = 53 kg

coefficient of kinetic friction, μ = 0.36

acceleration due to gravity, g = 9.8 m/s^2

Force, F = 372.098 N

Net force, f = F - friction force

f = 372.098 - μ m x g = 372.098 - 0.36 x 53 x 9.8

f = 185.114 N

acceleration, a = f / m = 185.114 / 53 = 3.49 m/s^2

initial velocity, u = 0

time, t = 4.94 s

s = ut + 1/2 at^2

s = 0 + 1/2 x 3.49 x 4.94 x 4.94

s = 42.6 m

6 0
3 years ago
Other questions:
  • Two bar magnets are labeled A and B. The ends of each magnet are numbered 1 or 2, but the poles are not labeled. When A1 is brou
    6·2 answers
  • An automobile starts from rest and travels down a straight section of road. The distance s (in feet) of the car from the startin
    5·1 answer
  • A ship was traveling across the Atlantic Ocean. It traveled 2,000 kilometers at a rate of 40 kilometers per hour. How long did i
    14·1 answer
  • A 0.2kg mass attached to the end of a spring is whirled in a vertical circle by a student. At some position, the mass experience
    12·1 answer
  • To keep the calculations fairly simple, but still reasonable, we shall model a human leg that is 92.0 cm long (measured from the
    9·1 answer
  • Why would an airplane flying at 10,000 meters above the ground have more gravitational potential
    13·1 answer
  • 1- what is a machine?
    9·1 answer
  • I will give brainliest to whoever is correct)<br>help, with this science question! thanks ^w^
    11·2 answers
  • A 6.50 meter high cylinder is filled with alcohol(density =806 kg/m^3). What is the pressure at the bottom of the cylinder?
    13·1 answer
  • A car slows down from 21 m/s to rest in a distance of 63m. Assuming the car has a constant acceleration, calculate the time it t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!