The magnitude of the magnetic moment due to the electron's motion is
.
<h3>
What is magnetic moment?</h3>
The magnetic pull and direction of a magnet or other object that produces a magnetic field are referred to as the magnetic moment in electromagnetism. Things that have magnetic moments include electromagnets, permanent magnets, various compounds, elementary particles like electrons, and a number of celestial objects (such as many planets, some moons, stars, etc).
The term "magnetic moment" really refers to the magnetic dipole moment of a system, which is the portion of the magnetic moment that can be represented by an equivalent magnetic dipole or a pair of magnetic north and south poles that are only very slightly apart. The magnetic dipole component is adequate for sufficiently small magnets or over sufficiently large distances.
Calculations:
radius= 
velocity=
Working formula, M=N/A


=


=
M=
=
To learn more about magnetic moment ,visit:
brainly.com/question/14298729
#SPJ4
Answer:
62.8 μC
Explanation:
Here is the complete question
The volume electric charge density of a solid sphere is given by the following equation: ρ = (0.2 mC/m⁵)r²The variable r denotes the distance from the center of the sphere, in spherical coordinates. What is the net electric charge (in μC) of the sphere if the radius of the sphere is 0.5 m?
Solution
The total charge on the sphere Q = ∫∫∫ρdV where ρ = volume charge density = 0.2r² and dV = volume element in spherical coordinates = r²sinθdθdrdΦ
So, Q = ∫∫∫ρdV
Q = ∫∫∫ρr²sinθdθdrdΦ
Q = ∫∫∫(0.2r²)r²sinθdθdrdΦ
Q = ∫∫∫0.2r⁴sinθdθdrdΦ
We integrate from r = 0 to r = 0.5 m, θ = 0 to π and Φ = 0 to 2π
So, Q = ∫∫∫0.2r⁴sinθdθdrdΦ
Q = ∫∫∫0.2r⁴[∫sinθdθ]drdΦ
Q = ∫∫0.2r⁴[-cosθ]drdΦ
Q = ∫∫0.2r⁴-[cosπ - cos0]drdΦ
Q = ∫∫∫0.2r⁴-[-1 - 1]drdΦ
Q = ∫∫0.2r⁴-[- 2]drdΦ
Q = ∫∫0.2r⁴(2)drdΦ
Q = ∫∫0.4r⁴drdΦ
Q = ∫0.4r⁴dr∫dΦ
Q = ∫0.4r⁴dr[Φ]
Q = ∫0.4r⁴dr[2π - 0]
Q = ∫0.4r⁴dr[2π]
Q = ∫0.8πr⁴dr
Q = 0.8π∫r⁴dr
Q = 0.8π[r⁵/5]
Q = 0.8π[(0.5 m)⁵/5 - (0 m)⁵/5]
Q = 0.8π[0.125 m⁵/5 - 0 m⁵/5]
Q = 0.8π[0.025 m⁵ - 0 m⁵]
Q = 0.8π[0.025 m⁵]
Q = (0.02π mC/m⁵) m⁵
Q = 0.0628 mC
Q = 0.0628 × 10⁻³ C
Q = 62.8 × 10⁻³ × 10⁻³ C
Q = 62.8 × 10⁻⁶ C
Q = 62.8 μC
Answer:
distance= 10 km
displacement= 7.21 km
Explanation:
distance= scalar (only magnitude)
displacement= vector (magnitude & direction)
distance= 6 km+ 4 km
= 10 km
displacement= shortest difference btwn 2 pts=
sqrt( 6^2+4^2)
sqrt(52)
7.21 km