Answer:
a = 1,008 10⁻³ m / s²
Explanation:
For this exercise, let's use the kinematic relations of accelerated motion
v² = v₀² - 2 a x
The negative sign is because the acceleration is opposite to the speed, the final speed is zero
0 = v₀² - 2 a x
a = v₀² / 2x
Let's reduce the magnitudes to the SI system
x = 2.4mm (1m / 10³mm) = 2.4 10⁻³m
Let's calculate
a = 2.2²/2 2.4 10⁻³
a = 1,008 10⁻³ m / s²
Answer:
10m/s^2
Explanation:
Force = mass x acceleration
Acceleration = force/ mass
= 20000000/2000000
=10m/s^2
B: gravity is absent in space
1) In the reference frame of one electron: 0.38c
To find the relative velocity of one electron with respect to the other, we must use the following formula:

where
u is the velocity of one electron
v is the velocity of the second electron
c is the speed of light
In this problem:
u = 0.2c
v = -0.2c (since the second electron is moving towards the first one, so in the opposite direction)
Substituting, we find:

2) In the reference frame of the laboratory: -0.2c and +0.2c
In this case, there is no calculation to be done. In fact, we are already given the speed of the two electrons; we are also told that they travel in opposite direction, so their velocities are
+0.2c
-0.2c