The vertex of the function f(x) exists (1, 5), the vertex of the function g(x) exists (-2, -3), and the vertex of the function f(x) exists maximum and the vertex of the function g(x) exists minimum.
<h3>How to determine the vertex for each function is a minimum or a maximum? </h3>
Given:
and

The generalized equation of a parabola in the vertex form exists

Vertex of the function f(x) exists (1, 5).
Vertex of the function g(x) exists (-2, -3).
Now, if (a > 0) then the vertex of the function exists minimum, and if (a < 0) then the vertex of the function exists maximum.
The vertex of the function f(x) exists at a maximum and the vertex of the function g(x) exists at a minimum.
To learn more about the vertex of the function refer to:
brainly.com/question/11325676
#SPJ4
<span>The variance method is as follows.
-Sum the squares of the values in data set, and then divide by the number of values in data set
- From that, subtract the square of the mean (add all values and divide by number of values in the data set)
Our variance is
<span>

Since variance has to be 14, we set

and solve for m

quadratic formula

-4 doesnt' work as it is not a positive integer
m = 11
</span></span>
18 Celsius because it is 64.4 in Fahrenheit which is a natural temperature and 50 is 122 in Fahrenheit which is very hot.
Hope I was helpful!
F(x)=(3(-1))-2 so the answer is 5