We are given: Function y=f(x).
First x-intercept of the y=f(x) is 2.
x-intercept is a point on x-axis, where y=0.
Replacing y by 0 and x by 2 in above function, we get
0=f(2)
Second x-intercept of the y=f(x) is 3.
Replacing y by 0 and x by 2 in above function, we get
0=f(3)
We are given another function y=8f(x).
Here only function f(x) is being multiplied with 8.
That is y values of function should be multiply by 8.
Because we have y value equals 0. On multiplying 8 by 0 gives 0 again and it would not effect the values of x's.
Therefore,
x-intercepts of y=8f(x) would remain same, that is 2 and 3.
Answer:
15cm
Step-by-step explanation:
a^2+b^2=c^2
12^2+9^2=c^2
144+81=c^2
c^2=225
c=15
Answer:
125%
Step-by-step explanation:
80/100=8
80*x=100
100/80=1.25
1.25*100=125
x=125%
Consider the charge for parking one car for t hours.
If t is more than 1, then the function is y=3+2(t-1), because 3 $ are payed for the first hour, then for t-1 of the left hours, we pay 2 $.
If t is one, then the rule y=3+2(t-1) still calculates the charge of 3 $, because substituting t with one in the formula yields 3.
75% is 75/100 or 0.75.
For whatever number of hours t, the charge for the first car is 3+2(t-1) $, and whatever that expression is, the price for the second car and third car will be
0.75 times 3+2(t-1). Thus, the charge for the 3 cars is given by:
3+2(t-1)+0.75[3+2(t-1)]+0.75[3+2(t-1)]=3+2(t-1)+<span>0.75 × 2[3 + 2(t − 1)].
Thus, the function which total parking charge of parking 3 cars for t hours is:
</span><span>f(t) = (3 + 2(t − 1)) + 0.75 × 2(3 + 2(t − 1))
Answer: C</span>