Answer:
The zeroes of this function are x=-5 and x=4
Answer:
20.6
Step-by-step explanation:
Given data
J(-1, 5)
K(4, 5), and
L(4, -2)
Required
The perimeter of the traingle
Let us find the distance between the vertices
J(-1, 5) amd
K(4, 5)
The expression for the distance between two coordinates is given as
d=√((x_2-x_1)²+(y_2-y_1)²)
substitute
d=√((4+1)²+(5-5)²)
d=√5²
d= √25
d= 5
Let us find the distance between the vertices
K(4, 5), and
L(4, -2)
The expression for the distance between two coordinates is given as
d=√((x_2-x_1)²+(y_2-y_1)²)
substitute
d=√((4-4)²+(-2-5)²)
d=√-7²
d= √49
d= 7
Let us find the distance between the vertices
L(4, -2) and
J(-1, 5)
The expression for the distance between two coordinates is given as
d=√((x_2-x_1)²+(y_2-y_1)²)
substitute
d=√((-1-4)²+(5+2)²)
d=√-5²+7²
d= √25+49
d= √74
d=8.6
Hence the total length of the triangle is
=5+7+8.6
=20.6
If you put 7% into a decimal it would be 0.07
Sorry I can’t buddy........................................................:(