The pressure in atm exerted by 1 mole of methane placed into a bulb with a volume of 244.6 mL at 25°C is 101.94atm.
<h3>How to calculate pressure?</h3>
The pressure of an ideal gas can be calculated using the following formula:
PV = nRT
Where;
- P = pressure
- V = volume
- n = number of moles
- R = gas law constant
- T = temperature
According to information in this question;
- T = 25°C = 25 + 273 = 298K
- V = 244.6mL = 0.24L
- R = 0.0821 Latm/Kmol
P × 0.24 = 1 × 0.0821 × 298
0.24P = 24.47
P = 24.47/0.24
P = 101.94atm
Therefore, the pressure in atm exerted by 1 mole of methane placed into a bulb with a volume of 244.6 mL at 25°C is 101.94atm.
Learn more about pressure at: brainly.com/question/11464844
The speed at which seismic waves travel depends on the properties of the material that they are passing through. For example, the denser a material is, the faster a seismic wave travels. P waves can travel through liquid and solids and gases, while S waves only travel through solids.
<span> The atomic number increases by one and the element becomes a different element. </span>
Answer:
I will say D. The molecules become arranged into regular cubic arrangement. but i'm not 100% sure
Explanation:
Answer:
For the first oxide, 1 g gives 0.888 g of copper.
Dividing by 0.888 tells us that 1.126 g gives 1 g of copper so has 0.126 g of oxygen.
For the second oxide, 1 g gives 0.798 g of copper.
Dividing by 0.798 tells us that 1.253 g gives 1 g of copper so has 0.253 g of oxygen.
So 1 g of copper combines with either 0.126 g or 0.253 g of oxygen.
Within the limits of experimental error, 0.253 is twice 0.126, confirming the law of multiple proportion.