Answer:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Explanation:
According to this question, sodium carbonate reacts with sulfuric acid to form aqueous sodium sulfate, carbon dioxide and water. The balanced chemical equation is as follows:
Na2CO3(aq) + H2SO4(aq) → Na2SO4(aq) + CO2(g) + H2O(l)
- Next, split compounds that are aqueous into ions.
2Na+(aq) + CO32-(aq) + 2H+(aq) + SO42-(aq) → 2Na+(aq) + SO42-(aq) + CO2(g) + H2O(l)
- Next, we cancel out the spectator ions, which are ions that remain the same in the reactants and products side of a chemical reaction. The spectator ions in this equation are 2Na+(aq) and SO42-(aq).
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
- Hence, the balanced ionic equation is as follows:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Answer:
1.07 g Ba
Explanation:
Hello there!
In this case, according to the definition of the Avogadro's number and the molar mass, it is possible to say that 6.022x10^{23} atoms of barium equal one mole, and at the same time, 1 mole equals 137.327 grams of this element; thus, it is possible to say that 6.022x10^{23} atoms of barium have a mass of 137.327 grams; therefore, it i possible for us to calculate the required mass in grams as shown below:

Best regards!
Explanation:
Hardness test — Scratch the rock with a fingernail, a copper penny, a glass plate or nail, and a ceramic plate. Check your Guide to assign it a rating on the Mohs Scale of Hardness.
Color streak test — Test for the “color streak” of the minerals by rubbing the rock across the ceramic plate in the Mineral Test Kit, or across smooth
cement. Look up which colors indicate which minerals are present.
Magnetism test — Hold the magnet in the Mineral Test Kit near your rock. If there is a magnetic pull, it has a metal mineral in it.
Acidity test — Put vinegar in the bottle included in the Mineral Test Kit. Squeeze out a few drops on the rock. If it fizzes, it contains carbonate.
A quick and easy way to find out whether your diamond is real or fake: try fogging it up with your breath. If it clears up after one or two seconds, then your diamond is real, but if it stays fogged for three to four seconds chances are that you're looking at a fake.
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.
<u>Answer:</u> The given example is a physical change.
<u>Explanation:</u>
A chemical change is defined as the change in which chemical composition of a substance changes and results in the formation of a new substance. These are usually irreversible process.
A physical change is defined as the change in which only the shape and size of the substance changes and no new substance is formed. Only phase change occurs in these processes. These are usually considered as a reversible change.
For the given example: Moisture in the air forms beads of water on a cold window pane.
This is a physical change because water was initially present in the gaseous state (Moisture in the air) and when it is coming in contact with the cold window pane, the gaseous state of water gets converted into a liquid state.
Hence, the given example is a physical change.