Answer:
specialized if you add one more I cause I'm pretty sure there is supposed to be one more i.
The hydrogen deficiency index( HDI) of strigol is = 10
<h3>How to calculate HDI:</h3>
The hydrogen deficiency index is used to measure the number of degree of unsaturation of an organic compound.
Strigol is an example of an organic compound because it contains carbons and hydrogen.
To calculate the HDI using the molecular formula given (C19H20O6) the formula for HDI is used which is:

where C = number of carbon atoms = 19
n= number of nitrogen atoms = 0
h= number of hydrogen atoms = 20
X = number of halogen atoms = 0
Note that oxygen was not considered because it forms two bonds and has no impact.
There for HDI =

HDI=

HDI =

HDI = 10
Therefore, the hydrogen deficiency index of strigol is = 10
Learn more about unsaturated compounds here:
brainly.com/question/490531
Answer:
18 O, 17 O, and 16 O
Explanation:
three naturally stable isotopes
Answer:
if my calculation are correct, it's 295 grams
Explanation:
because liters converted to grams is .1=100 so if you take 2.95 times 100, it equals 295
Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min