Answer:
0.1593 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 600 torr/760 = 0.789 atm, V₁ = 185.0 mL = 0.185 L, T₁ = 25.0°C + 273 = 298.0 K.
P₂ (at STP) = 1.0 atm, V₂ = ??? L, T₂ (at STP = 0.0°C) = 0.0°C + 273 = 273.0 K.
<em>∴ V₂ = P₁V₁T₂/P₂T₁</em> = (0.789 atm)(0.185 mL)(298.0 K)/(1.0 atm)(273.0 K) = <em>0.1593 L.</em>
Answer:
Explanation:
we know that
ΔH=m C ΔT
where ΔH is the change in enthalpy (j)
m is the mass of the given substance which is water in this case
ΔT IS the change in temperature and c is the specific heat constant
we know that given mass=2.9 g
ΔT=T2-T1 =98.9 °C-23.9°C=75°C
specific heat constant for water is 4.18 j/g°C
therefore ΔH=2.9 g*4.18 j/g°C*75°C
ΔH=909.15 j
Answer:
ICMP Echo Request
Explanation:
ICMP Echo Request is a form of probe or message sent by a user to a destination system.
The volume of a 14.00g of nitrogen at 5.64atm and 315K is 4.59L.
<h3>How to calculate volume?</h3>
The volume of an ideal gas can be calculated using the following ideal gas equation formula;
PV = nRT
Where;
- P = pressure (atm)
- V = volume (L)
- n = number of moles
- R = gas law constant
- T = temperature
An ideal gas is a hypothetical gas, whose molecules exhibit no interaction, and undergo elastic collision with each other and with the walls of the container.
The number of moles in 14g of nitrogen can be calculated as follows:
moles = 14g ÷ 14g/mol = 1mol
5.64 × V = 1 × 0.0821 × 315
5.64V = 25.86
V = 25.86 ÷ 5.64
V = 4.59L
Therefore, 4.59L is the volume of the gas
Learn more about volume at: brainly.com/question/12357202
#SPJ1