Reactivity could be one also toxicity flammability ect
In general chemistry, isomers are two or more elements that have the same number of protons but differ in mass number. In organic chemistry, the compounds are cis or trans isomers if they have the same chemical formula, but differ in the placement of functional groups based on molecular geometry. Cis isomer is when two like functional groups are on the same side of the molecules, while trans isomer is when the like functional groups are on opposite sides.
The cis-trans isomers are shown in the picture. As you can see, in the cis isomer, the methane functional group are both in the same side. Same as well with the hydrogen atoms. On the other hand, these functional groups are opposite to each other in the trans isomer.
Answer:
Explanation:
Chloride is described as an extended structure because its atoms are arranged following an endless repeating pattern and are of distinct ratio
Crystals and polymers mostly form extended structures as seen in the formation of sodium chloride whereby the ions in the compound are arranged following a repeating pattern. ( i.e. has a giant ionic structure ).
Chloride is a considered an extended structure because in sodium chloride it forms an unending repeated pattern of ions which makes it a perfect example of an extended structure.
Hence we can conclude that Chloride can be described as an extended structure because its atoms are arranged following a repeating pattern and are of distinct ratio.
Answer:
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions.
Explanation:
The student have in solution Ag⁺ and Cu²⁺ ions but he just want to analyze the silver, that means he need to separate ions.
Centrifuging the solution to isolate the heavier ions <em>FALSE </em>Centrifugation allows the separation of a suspension but Ag⁺ and Cu²⁺ are both soluble in water.
Adding enough base solution to bring the pH up to 7.0 <em>FALSE </em>At pH = 7,0 these ions are soluble in water and its separation will not be possible.
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions <em>TRUE </em>For example, the addition of Cl⁻ will precipitate the Ag⁺ as AgCl(s) allowing its separation.
Evaporating the solution to recover the dissolved nitrates. <em>FALSE</em> . Thus, you will obtain the nitrates of these ions but will be mixed doing impossible its separation.
I hope it helps!