<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>
Explanation:
its hard to explain its very complex but its so they can function properly
Answer:
Centripetal acceleration
Explanation:
- The centripetal acceleration is the motion inwards towards the center of a circular path.
- <em><u>Centripetal acceleration is given by; the square of the velocity, divided by the radius of the circular path.
</u></em>
ac = v²/r
Where; ac = acceleration, centripetal, m/s², v is the velocity, m/s and r is the radius, m
So we want to know what will happen if we put a magnetically soft material in a strong magnetic field. A magnetically soft material is a material whose magnetic field can easily be reversed. Those are ferromagnetic materials. Iron is such a material. When a magnetically soft material is placed into a strong magnetic field it gets its own magnetic field. But its not a permanent magnetic field, it can be changed by a different strong magnetic field.
Your question kind of petered out there towards the end and you didn't specify
the terms, so I'll pick my own.
The "Hubble Constant" hasn't yet been pinned down precisely, so let's pick a
round number that's in the neighborhood of the last 20 years of measurements:
<em>70 km per second per megaparsec</em>.
We'll also need to know that 1 parsec = about 3.262 light years.
So the speed of your receding galaxy is
(Distance in LY) x (1 megaparsec / 3,262,000 LY) x (70 km/sec-mpsc) =
(150 million) x (1 / 3,262,000) x (70 km/sec) =
<em>3,219 km/sec </em>in the direction away from us (rounded)