Answer:
F1 = G m1 m2 / R^2 force of attraction
F2 = G m1 m2 / (R/2)^2
F2 / F1 = 4 the force of gravity will be quadrupled
The speed is changing its direction all the time. There
is an acceleration which changes the direction of the speed – that is called
centripetal acceleration. Only uniform linear motions are considered to have no
acceleration.
This is the general formula for acceleration
a = dv/dt
When calculating dv, you should keep in mind the change
in the velocity vector’s direction. You can easily see in a graph that with dt
tending to 0 (so the length of the arc covered is also tending to 0), the difference
between vectors Vf and V0 has a direction which is perpendicular to velocity
(the shorter the arc, the closest the angle is to 90 degrees).
There is a formula (which can be deducted from the
previous formula) which allows you to calculate the acceleration:
a = v^2/r
Let’s talk about the units:
v is in m/s
r is in m
so v^2/r
is in (m/s)^2/m = (m^2/s^2)/m = m/s^2
which is the same unit as dv/dt:
dv/dt = (m/s)/s= m/s^2
<span>There's nothing on that list that may be damaged by increase in solar activity.
</span>
The coefficient of friction must be 0.196
Explanation:
For a car moving on a circular track, the frictional force provides the centripetal force needed to keep the car in circular motion. Therefore, we can write:
where the term on the left is the frictional force acting between the tires of the car and the road, while the term on the right is the centripetal force. The various terms are:
is the coefficient of friction between the tires and the road
m is the mass of the car
is the acceleration of gravity
v is the speed of the car
r is the radius of the curve
In this problem,
r = 750 m is the radius
is the speed
And solving for
, we find the coefficient of friction required to keep the car in circular motion:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
No, it will only melt if the temperature is lowered. If you compress it, it will change the shape, but it will not change the state it is in (i.e. solid).